
 
 

Supplementary figure 1: Estimated tuning similarity and noise correlations are robust to different choices 

of orientation basis functions used to fit voxel tuning curves.  

(A-C) Three different basis sets used to fit voxel tuning curves. The value 𝑓𝑘(𝑠) of each (𝑘-th) basis function 

is plotted against stimulus orientation (𝑠). (A) The default basis set of eight bell-shaped functions (zero-

rectified cosines, raised to the fifth power) used in the analyses presented in the main text. (B) A more 

expressive basis set of ten bell-shaped functions (zero-rectified cosines, raised to the seventh power). (C) 

An uncorrelated basis of four sines and four cosines, with periods of 180°, 90°, 45° and 25°. Sine/cosine 

pairs with the same period are shown in the same color, in solid/dotted lines, respectively. This basis spans 

the same space as the default set shown in A, but with orthogonal basis vectors. (D) Voxel tuning curves 

were fit as a linear combination of basis functions in each of the three basis sets show in A-C, and tuning 

similarity and noise correlations between pairs of voxels were calculated as in the main analysis (see 

Methods section 2.8.1). Lines and shaded regions indicate the mean +/- SEM noise correlation across 

subjects, in 20 equally spaced tuning similarity bins, for the three different basis sets (cf. Fig. 2A). Results 

are virtually identical regardless of which basis set is used to describe voxel tuning, indicating that slight 

correlations between adjoining functions in our chosen basis set only marginally affect the analyses, and 

that this basis provides sufficiently fine-grained coverage of orientation space. 



Supplementary figure 2: Inter-subject and inter-voxel variability in noise correlations.  

(A) Average noise correlations (𝑟𝑛𝑜𝑖𝑠�̂�) plotted against average tuning similarity (𝑟𝑡𝑢𝑛𝑖𝑛𝑔̂ ), in 20 equally 

space tuning similarity bins, for individual subjects (gray lines) and averaged across participants (black 

line; cf. Fig. 2A). (B) Goodness-of-fit per subject for the exponential decay function fits to the data in (A), 

quantified by means of the overfitting-adjusted coefficient of determination (𝑅𝑎𝑑𝑗
2 ). Subjects are sorted 

in order of increasing goodness-of-fit. For the majority subjects (13/18), these data were extremely well 

fit by an exponential decay with decreasing tuning similarity, with overfitting-adjusted 𝑅2-values in excess 

of 0.9. Fits were moderately good for another two subjects (𝑅𝑎𝑑𝑗
2  around 0.3), and below 0 for the 

remaining three (𝑅2-values below 0 arise after adjustment for overfitting).  (C) Box plots showing the 

distribution of noise correlations across voxel pairs, per subject. Boxes extend from the first to the third 

quartiles, with notches indicating the medians. Whiskers span the range between the most extreme data 

points that were not selected as outliers. Outliers were defined as values deviating from the mean by 

more than 1.5 times the inter-quartile range. For figure clarity, outliers are not shown, due to the large 

number of data (+/- 2 million voxel pairs per subject). Note that subject order here is not the same as in 

(B). 

 



 
 

Supplementary figure 3: Shared noise depends on both orientation tuning and inter-voxel distance.  

Given that neighboring voxels in cortex tend to have similar orientation tuning preferences (Freeman et 

al., 2011; Mannion et al., 2010; Sasaki et al., 2006; Swisher et al., 2010), do noise correlations arise 

because of noise that is shared between neighboring voxels (e.g., due to the BOLD point spread function 

(Parkes et al., 2005) or other causes of spatially correlated noise; see e.g. Arcaro et al. (2015), Henriksson 

et al. (2015), Murphy et al. (2013), and Power et al., (2012)), rather than noise that depends on tuning per 

se? To address this question, voxels pairs were sorted into 20 x 20 bins of similar inter-voxel distance and 

tuning similarity (𝑟𝑡𝑢𝑛𝑖𝑛𝑔̂ ). Within each bin, the mean noise correlation, tuning similarity and distance 

across all pairs of voxels was calculated. This produced, for each observer, a three-dimensional noise 

correlation surface. Panels (A-C) show the average surface across subjects for V1-V3 combined, striate 

(V1) and extrastriate (V2-V3) cortex, respectively. Group-average surfaces were calculated by taking the 

Fisher-transform of the surface for each subject, averaging across subjects, and then transforming these 

averages back to the correlation scale. Lines protruding vertically out of the mesh surfaces indicate + 1 

SEM.  

To quantify the degree to which noise correlations can be explained by spatial distance and/or tuning 

similarity, noise correlation surfaces obtained for each participant were fitted with each of four models. 

The models described noise correlations as a function of decreasing tuning similarity (model 1), increasing 

distance (model 2) or both (models 3 and 4). More specifically, model 1 describes an exponential decay in 

noise correlations with decreasing tuning similarity (cf. equation (17)):  

ℎ(𝑚, 𝑛) = 𝛼 exp (−𝛽(1 − 〈𝑟𝑡𝑢𝑛𝑖𝑛𝑔̂ 〉𝑚,𝑛)) + 𝛾 

where ℎ(𝑚, 𝑛) is the predicted noise correlation for voxel pairs in the (𝑚, 𝑛)-th bin (𝑚 indexes bins of 

different tuning similarity and 𝑛 enumerates bins of different inter-voxel distance),  〈𝑟𝑡𝑢𝑛𝑖𝑛𝑔̂ 〉𝑚,𝑛 is the 

mean (estimated) tuning similarity between voxel pairs in the (𝑚, 𝑛)-th bin, 𝛽 and 𝛼 control the rate and 

starting value of the decay, and 𝛾 models a constant baseline correlation among all voxels.  

Model 2 describes noise correlations as decaying exponentially with increasing inter-voxel distance:  

ℎ(𝑚, 𝑛) = 𝜅 exp(−𝜆〈𝑑〉𝑚,𝑛) + 𝛾 

where 〈𝑑〉𝑚,𝑛 is the average inter-voxel distance in bin (𝑚, 𝑛), and 𝜆 and 𝜅 determine the rate and starting 

value of the decay.  
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Model 3 describes noise correlations as decaying with both increasing distance and decreasing tuning 

similarity:  

   ℎ(𝑚, 𝑛) = 𝛼 exp (−𝛽(1 − 〈𝑟𝑡𝑢𝑛𝑖𝑛𝑔̂ 〉𝑚,𝑛)) +𝜅 exp(−𝜆〈𝑑〉𝑚,𝑛) + 𝛾 

Model 4 describes the decline in noise correlations as an interaction between an increase in distance 

and a decrease in tuning similarity:  

ℎ(𝑚, 𝑛) = 𝛼 exp (−𝛽(1 − 〈𝑟𝑡𝑢𝑛𝑖𝑛𝑔̂ 〉𝑚,𝑛)) exp(−𝜆〈𝑑〉𝑚,𝑛) + 𝛾 

Each of these exponential decay functions were fit to the data by minimizing the squared error 

between the Fisher-transformed predictions and the Fisher-transformed bin-average noise correlations, 

and decay amplitudes (𝛼 and 𝜅) and rates (𝛽 and 𝜆) were constrained to be non-negative. Goodness-of-

fit was assessed by calculating the overfitting-adjusted coefficient of determination (𝑅𝑎𝑑𝑗
2 ) for each model 

and subject, and then a one-tailed Wilcoxon-signed rank test was used to determine whether the average 

variance explained across subjects (⟨𝑅𝑎𝑑𝑗
2 ⟩) was reliably greater than zero, for each model. Between 

models, goodness-of-fit was compared using a two-tailed Wilcoxon-signed rank test.  

Although tuning similarity by itself explained significant variance in the noise correlation surfaces 

(model 1: V1-V3 combined: ⟨𝑅𝑎𝑑𝑗
2 ⟩ = 0.22, p < 10-4; striate cortex: ⟨𝑅𝑎𝑑𝑗

2 ⟩ = 0.19, p = 0.041; extrastriate 

cortex: ⟨𝑅𝑎𝑑𝑗
2 ⟩ = 0.27, p < 10-4), these data were best described by an interaction between tuning similarity 

and distance in extrastriate cortex and V1-V3 combined (model 4: extrastriate cortex: ⟨𝑅𝑎𝑑𝑗
2 ⟩ = 0.83, p < 

10-5; V1-V3 combined: ⟨𝑅𝑎𝑑𝑗
2 ⟩ = 0.84, p < 10-5; comparisons between model 4 and all other models, in both 

ROIs: all p < 0.01). In striate cortex, a combination of tuning and distance better described the data than 

tuning alone (model 3: ⟨𝑅𝑎𝑑𝑗
2 ⟩ = 0.65, p < 10-5; model 4: ⟨𝑅𝑎𝑑𝑗

2 ⟩ = 0.64, p < 10-5; comparisons of models vs. 

3 & 4 vs. model 1, both p < 10-5), and this combination was marginally better when compared with a model 

in which noise correlations decayed with increasing distance alone (model 2 vs. 3, p = 0.074; model 2 vs. 

4, p = 0.054). Together, these results indicate that shared fMRI response variability in areas V1-V3 depends 

on both the distance between voxels and their orientation tuning properties. 

Please note that, from a decoding perspective, precisely how tuning-dependent correlations arise is 

of lesser importance: as long as tuning-dependent correlations are present in the data, decoding 

performance will improve when the generative model takes them into account (as exemplified by the 

simulations in the main text). 
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