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The information that the brain receives from the senses is typically 
consistent with a range of possible stimulus values; consequently, 
all of our perceptual decisions have to be made under uncertainty.  
It is well known that this sensory uncertainty can affect behavior1,2, 
but how the fidelity of sensory knowledge is represented in cortex 
remains unclear. Bayesian theories of neural coding postulate that a 
probability distribution over sensory stimuli is encoded in the activity 
of a whole population of neurons, with the width of this distribution 
reflecting the degree of uncertainty about the stimulus3–6. Although 
indirect neurophysiological evidence is consistent with this notion7,8, 
this hypothesis has yet to be tested directly in sensory cortex. We 
used functional magnetic resonance imaging (fMRI) in combination 
with a model-based analysis to address two fundamental questions. 
First, can a probability distribution that reflects sensory uncertainty 
be extracted from population activity in human visual cortex? Second, 
do observers use knowledge of this uncertainty in their perceptual 
decisions? Notably, unlike previous behavioral studies on probabil-
istically optimal inference, no external noise was added to the visual 
stimuli to manipulate uncertainty, as changes in physical stimulus 
properties could then act as external cues to reliability9. We hypoth-
esized that varying degrees of internal neural noise might nonetheless 
affect sensory processing on a trial-by-trial basis; if uncertainty is part 
of the neural sensory code, then these fluctuations in uncertainty 
should alter human perceptual decision-making.

Participants viewed annular gratings of random orientations while 
we measured activity in visual cortex using fMRI. Shortly after the 
presentation of each grating, observers reported its orientation by 
rotating a bar presented at fixation. Observers generally performed 
well on this task. The mean angular difference between reported and 

actual orientations was 4.5°, ranging between 0.003° and 37.68° on 
individual trials. These fluctuations in behavioral accuracy are often 
thought to arise, in part, from internal neural noise affecting the fidelity 
of cortical orientation representations. We asked whether this trial-by- 
trial variability in the fidelity of internal knowledge was reflected in 
fMRI activation patterns. We addressed this question using a model-
based decoding approach to analyzing fMRI data (Online Methods). 
Specifically, using a generative model incorporating the orientation 
preferences of voxels as well as their (correlated) noise, we approxi-
mated on each trial the posterior probability distribution over orien-
tation, given the pattern of blood oxygen level–dependent (BOLD) 
activity. This approach differs from conventional fMRI decoding 
studies10–12 in that it explicitly recovers a full probability distribu-
tion over stimulus values, rather than a single stimulus estimate.  
The (circular) mean of the posterior distribution serves as an estimate 
of the presented orientation, and its width (circular s.d.) as a measure 
of the degree of stimulus uncertainty in the cortical representation. 
Regions of interest were those portions of visual areas V1–V3 that 
corresponded to the retinotopic representation of the stimuli.

To benchmark our approach, we first tested its ability to identify 
the presented orientation from activity patterns in areas V1–V3 
(Supplementary Fig. 1a,b). The decoded and presented orientations 
were significantly correlated (r = 0.69, P ≈ 0), consistent with previous 
findings13,14. We then turned to the degree of trial-by-trial uncertainty 
about orientation. The decoder’s estimates of uncertainty varied from 
trial to trial as a result of noise in the fMRI measurements (Fig. 1a).  
To the extent that our decoding approach appropriately models the 
fMRI data, uncertainty on a single trial should be related to variability 
across trials. Accordingly, to verify the decoder’s assumptions and test 
whether the decoded uncertainty followed the actual degree of noise 
in the fMRI data, we binned the data according to posterior width, 
and calculated the trial-by-trial variability in decoded orientation 
estimates for each of the bins (Supplementary Fig. 1c). We found 
that the decoded uncertainty was indeed significantly correlated with 
the across-trial variability in decoded orientations (r = 0.91, P ≈ 0).  
A comparison between different noise models revealed that the one 
used here best captured the fMRI data (Supplementary Fig. 2). 
Altogether, these findings corroborate the validity of our assumptions  
and suggest that posterior width captures the overall degree of uncer-
tainty in the data on a trial-by-trial basis.

Having established that the decoded uncertainty reflects the aggre-
gate of all fMRI noise sources, we next asked whether it captures vari-
ability in cortical stimulus representations in particular. We addressed 
this question in two sets of analyses, focusing first on gratings of 
different orientations. Consistent with previous work15,16, behavioral  
orientation judgments were more accurate for cardinal than for 
oblique orientation stimuli (correlation between behavioral variability  
and the angle of the presented stimulus with the nearest cardinal 
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axis: r = 0.54, P = 1.8 × 10−5; Fig. 1b). Because behavioral accuracy is 
directly related to uncertainty, we tested whether this oblique effect in 
behavior was paralleled in visual cortical responses. Indeed, the width 
of the decoded posterior probability distribution was narrower for 
stimulus orientations closer to the cardinal axes (r = 0.35, P = 0.008; 
Fig. 1b). Thus, similar to behavior, horizontal and vertical orienta-
tions are represented with greater precision in visual cortex.

For the second set of analyses, we focused on repeated presentations 
of physically identical orientation stimuli. We reasoned that, if the 
posterior distribution also captures random, trial-by-trial fluctuations 
in cortical activity, then more certain decoder estimates should be 
linked to reduced variability in the observer’s behavior, even for physi-
cally identical orientation stimuli6. To test this relationship, we divided 
each participant’s data into bins of increasing decoded uncertainty, 
calculated the across-trial variability in participant behavior for each 
of the bins and computed the partial correlation coefficient between 
the two (while controlling for stimulus orientation and between- 
subject variability, Online Methods). This revealed that observ-
ers clearly made more accurate decisions when the information 
decoded from their visual activity was more precise (r = 0.31,  
P = 0.021; Fig. 1c). By contrast, neither the error in decoded ori-
entation (Supplementary Fig. 3) nor the amplitude or width of 
the estimated neural population response (Supplementary Fig. 4)  
reliably predicted behavioral variability, demonstrating the power of 
the posterior distribution in capturing trial-by-trial fluctuations in 
cortical processing. Control analyses established that these results 
could not be accounted for by differences in eye movements, gross 
BOLD amplitude or subject head motion (Supplementary Fig. 5), 
and were specific to voxels tuned to the retinotopic location of the 
stimulus (that is, we found no reliable correlation between decoded 
uncertainty and behavioral variability when selecting V1–V3 voxels 
preferring other retinotopic locations, P = 0.17). Taken together, these 
results demonstrate that the fidelity of a sensory representation can 
reliably be extracted from fMRI activation patterns.

Armed with the ability to estimate uncertainty in sensory represen-
tations, the critical question is whether observers take this uncertainty 
into account when making perceptual decisions. If so, then this would 
provide strong empirical support for probabilistic models of percep-
tion6. To address this question, we relied on a well-established behav-
ioral finding17,18 that we replicated here: orientation judgments were 
biased away from the cardinal axes (Supplementary Fig. 6). Although 
the precise neural mechanisms underlying such repulsive biases 
have yet to be determined, all theoretical models18–20 of these biases 
generate the same prediction: if the observer takes into account the 

uncertainty in perceptual representations, the amount of behavioral  
bias should depend on the degree of sensory uncertainty. Indeed, 
we found that behavioral biases increased when the decoded fidelity 
of cortical information about the visual stimulus was low (r = 0.32,  
P = 0.017; Fig. 1d), consistent with a recent theoretical prediction that 
the repulsive bias should increase with increasing levels of internal 
uncertainty20. Given that the physical stimulus was held constant, this 
suggests that human observers use knowledge of internal uncertainty 
in their perceptual decision-making and, moreover, that they monitor 
fluctuations therein on a trial-by-trial basis.

A major limitation of previous work on probabilistically optimal 
inference has been the use of external sources of noise, leaving open 
the possibility that observers simply monitor certain image properties, 
such as blurriness or contrast, as external cues to uncertainty. For this 
reason, we held physical stimulus properties constant and relied on 
fluctuations in internal noise to make perceptual information more 
or less reliable to the observer. We found that the uncertainty in  
perceptual representations could reliably be extracted as a probability 
distribution from human visual cortex with fMRI, and, moreover, that 
human observers appeared to rely on the uncertainty in this internal 
evidence when making perceptual decisions. These results suggest 
that neural activity encodes probability distributions over stimulus 
values, rather than merely point estimates, and that the brain uses this 
probabilistic information in its computations.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.

AcknowledgmentS
We thank S. Ling for valuable comments and discussion, K. Ambroziak for  
help with data collection, C. Beckmann for advice on statistical analyses, and  
P. Gaalman for MRI support.

AUtHoR contRIBUtIonS
R.S.v.B., W.J.M. and J.F.M.J. conceived and designed the experiments. R.S.v.B. 
collected data. R.S.v.B. analyzed data, with help from W.J.M., M.S.P. and J.F.M.J. 
R.S.v.B., W.J.M., M.S.P. and J.F.M.J. wrote the paper. 

Stimulus orientation (°)
90450 135 180 90450 135 180

Decoded
orientation (µ)

Decoded
uncertainty
(s.d.)

Stimulus orientation (°)

17

16

18

19

20

21

5

4

6

7

B
eh

av
io

ra
l v

ar
ia

bi
lit

y 
(s

.d
., 

in
 °

)

0 15 30 45

Decoded uncertainty (s.d., in °)

4

3

2

1
0 15 30

5

4

Decoded uncertainty (s.d., in °)

B
eh

av
io

ra
l v

ar
ia

bi
lit

y 
(s

.d
.,°

)

6

5

r = 0.31
P = 0.02

r = 0.32
P = 0.02

45

p
(s

|b
)

D
ecoded uncertainty (s.d., in °)

B
eh

av
io

ra
l b

ia
s 

(µ
, i

n 
°)

a b

c d

Figure 1 Stimulus uncertainty decoded from human visual cortex 
correlates with behavior. (a) Examples of probability distributions over 
stimulus orientation, decoded from fMRI activation patterns obtained from 
areas V1–V3, and five different trials (trials indicated by different colors; 
s, stimulus orientation; b, BOLD activity). (b) Both behavioral variability 
and decoded uncertainty increased for more oblique stimulus orientations 
in areas V1–V3 (behavioral variability, t(53) = 4.71, P = 1.8 × 10−5; 
decoded uncertainty, t(53) = 2.75, P = 0.008). For illustrative purposes, 
trials were sorted into 12 equally spaced orientation bins. (c) Behavioral 
variability was significantly correlated with posterior width in areas V1–V3 
(t(52) = 2.39, P = 0.021). (d) Behavioral biases increased with increasing 
width of the posterior distribution in areas V1–V3 (t(52) = 2.46,  
P = 0.017). In c and d, colors indicate four within-observer bins of 
increasing decoded uncertainty (for each of 18 observers). In all plots, 
error bars represent ±1 s.e.m., dashed lines represent best linear fits and 
reported r values are partial correlation coefficients obtained from a linear 
regression analysis (Online Methods). Similar results were found for  
visual areas V1–V3 (supplementary Fig. 1).
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oNLINe Methods
Participants. 18 healthy adult volunteers (aged 22–31, seven female), with nor-
mal or corrected-to-normal vision, participated in this study. All participants 
provided informed written consent. The study was approved by the Radboud 
University Institutional Review Board. Assuming effect sizes similar to  
those reported here, a power analysis indicated that 18 subjects would  
produce a power level of 0.76–0.86. Indeed, this sample size is consistent  
with previous decoding studies21,22.

data acquisition. MRI data were acquired using a Siemens 3T Magnetom Trio 
scanner with an eight-channel occipital coil located at the Donders Center for 
Cognitive Neuroimaging. For each participant, a high-resolution T1-weighted 
magnetization-prepared rapid gradient echo anatomical scan (MPRAGE, 
FOV 256 × 256, 1-mm isotropic voxels) was collected at the start of the  
session. Functional imaging data were acquired using T2*-weighted gradient-
echo echoplanar imaging, in 30 slices oriented perpendicular to the calcarine 
sulcus, covering all of the occipital and part of posterior parietal and temporal 
cortex (TR 2,000 ms, TE 30 ms, flip angle 90°, FOV 64 × 64, slice thickness  
2.2 mm, in-plane resolution 2.2 × 2.2 mm).

experimental design and stimuli. Stimuli were generated by a Macbook Pro 
computer running Matlab and the Psychophysics Toolbox23,24, and displayed 
on a rear-projection screen using a luminance-calibrated EIKI projector  
(resolution 1,024 × 768 pixels, refresh rate 60 Hz). Observers viewed the visual 
display through a mirror mounted on the head coil.

Participants were required to maintain fixation on a central bull’s eye target 
(radius: 0.25°) throughout each experimental run. Each run consisted of an  
initial fixation period (4 s), followed by 18 stimulus trials (12 s) and a final fixa-
tion period (4 s). Trials were separated by a 4-s inter-trial interval. Each trial 
started with the presentation of an orientation stimulus (1.5 s). Orientation  
stimuli were counterphasing sinusoidal gratings (contrast: 10%, spatial fre-
quency: 1 cycle per °, randomized spatial phase, 2-Hz sinusoidal contrast modu-
lation) presented in an annulus surrounding fixation (inner radius: 1.5°, outer 
radius: 7.5°, grating contrast decreased linearly to 0 over the outer and inner 
0.5° radius of the annulus). The orientation of the stimulus was determined 
pseudo-randomly (from 0–179°) to ensure an approximately even sampling of 
orientations in each run. The grating was followed by a fixation interval (6.5 s),  
and then a response period (4 s) in which a black line (length: 2.8°, width: 
0.1°) appeared at the center of the screen at an initially random orientation.  
The line disappeared gradually over the last 1 s of the response period to indicate 
the approaching end of this window. Subjects reported the orientation of the 
grating by rotating the line using separate buttons for clockwise or counterclock-
wise rotation on an MRI-compatible button box.

Participants completed 10–18 stimulus runs. Each scan session also included 
two visual localizer runs, in which flickering checkerboard patterns were  
presented within the same aperture as the gratings (check size: 0.5°, display rate: 
10 Hz, contrast: 100%). Checkerboards were presented in 12-s blocks, inter-
leaved with fixation blocks of equal duration.

Retinotopic maps of visual cortex were acquired in a separate scan session 
using conventional retinotopic mapping procedures25–27.

fmRI data preprocessing and regions of interest. Functional images were 
motion corrected using FSL’s MCFLIRT28 and passed through a high-pass  
temporal filter with a cut-off period of 40 s to remove slow drifts in the BOLD 
signal. Residual motion-induced fluctuations in the BOLD signal were removed 
through linear regression, based on the alignment parameters generated by 
MCFLIRT. Functional volumes were aligned to a previously collected anatomi-
cal reference scan using FreeSurfer29.

Regions of interest (ROIs; V1, V2 and V3) were defined on the reconstructed 
cortical surface using standard procedures25–27. In each area, we selected all 
voxels that responded to the localizer stimulus at a lenient threshold (P < 0.05 
uncorrected) for subsequent analysis, in the native space for each participant.  
Control analyses verified that our results were not strongly affected by the 
number of voxels selected for analysis (Supplementary Fig. 7). In one of our 
control analyses, we tested the degree to which the decoded uncertainty was 
specific to the retinotopic location of the stimulus. For this analysis, we selected 

those voxels in areas V1–V3 combined that were not significantly activated 
by the localizer stimulus (at a statistical threshold of P > 0.2), obtaining on  
average 1,257 voxels per subject (by comparison, the average number of voxels 
in individual ROIs was 660; Supplementary Fig. 1).

The time series of each voxel was z-normalized using the corresponding time 
points of all trials in a given run. Activation patterns for each trial were defined 
by averaging together the first 4 s of each trial, after adding a 4-s temporal shift 
to account for hemodynamic delay. This relatively short time window (4 s) was 
chosen in order to ensure that activity from the response window was excluded 
from analysis. Control analyses verified that this time window was close to the 
peak of the hemodynamic response function (time series for this analysis were 
normalized to percentage signal change units, defined relative to the average 
activation level across each run; Supplementary Fig. 8). In addition, temporally 
expanding the time window to include an earlier time point did not greatly 
affect any of our results. For the control analyses of Supplementary Figure 5,  
mean BOLD intensity values were obtained by averaging across all voxels in a 
given ROI. Subject head motion was calculated as the Euclidian norm of the 
temporal derivatives of the realignment parameters generated by the motion 
correction algorithm – a quantity that reflects the total amount of head motion 
per time step. We averaged across TRs 3 and 4 of each trial, similar to our  
decoding analyses.

decoding analysis. The generative model. Our decoding approach started 
with the assumption that voxels in early visual cortex are selective to orienta-
tion10,11,13,14,30,31, and that voxel activity varies across trials due to (correlated) 
noise32,33. More specifically, we assumed that the BOLD response of voxel i to 
orientation s can be characterized as a linearly weighted combination of the ide-
alized tuning functions f(s) of K neural populations13,14 (K = 8), each tuned to a 
different orientation, combined with Gaussian noise 

b W f si
k

K
ik k k i= ( ) +( ) +∑ h n

Here, f sk ( ) is the mean response (or tuning curve) of the kth population as a 
function of stimulus orientation s, Wik is the contribution of population k to 
the response of voxel i, and both ηk and νi model sources of noise. The latent 
(unobserved) variable  is normally distributed as ~ ,N 0 2σ I( ) , and specifies 
noise that is shared among neural populations of similar orientation preference 
(which is why it is weighted by w). It models global changes in the population 
response due to, for example, shifts in response gain. The variable  was included 
to capture various remaining sources of noise, such as variability in the fMRI 
signal due to thermal, electrical or physiological noise, as well as residual sources 
of neural noise. The distribution of  is given by 

   N∼ 0,( )

  = −( )+r rT T1 I

Thus,  describes noise specific to individual voxels (with variance τi
2 for voxel i),  

as well as noise shared globally among voxels irrespective of their tuning prop-
erties (scaled by ρ). Population tuning curves (or basis functions) f(s) are half 
wave-rectified cosine functions, raised to the fifth power13 
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s

k
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where ϕk is the preferred orientation of the kth population. Preferred orienta-
tions are equally spaced between 0–180°, with one basis function maximally 
tuned toward horizontal.

The conditional probability of a voxel activation pattern given a noisy popula-
tion response (f(s) + ) is then defined as 
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Marginalizing over  results in 
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When developing the model, we considered four different, increasingly complex 
models. The current model was found to best capture the data on two relevant 
benchmark tests (Supplementary Fig. 2). Supplementary table 1 provides an 
overview of all parameters.

Training and testing. Model parameters were estimated using the fMRI  
activation patterns for the orientation stimuli in a leave-one-run-out cross- 
validation procedure. Data were divided into a training data set (consisting 
of data from all but one fMRI run) and a testing data set (consisting of data 
from the remaining run). The average training data set consisted of 249 trials 
and 1,981 voxels. When training the model, we maximized the likelihood of 
the model parameters given the orientation stimuli. Model parameters were 
estimated in a two-step training procedure to constrain the number of free 
parameters and prevent overfitting of the covariance matrix. In the first step of 
this estimation procedure, we imposed a regularizing prior on the covariance 
matrix, assuming that σ = 0. This reduces the number of free parameters in the 
covariance matrix considerably (from ((K+1)M + 2) to (M + 2)), but results in a 
predictable underestimation of σ in the second step of the estimation procedure  
(see below), when we relaxed the prior on σ. However, simulations indicated that 
this did not seriously affect our ability to reconstruct the uncertainty present in 
the activation patterns (see Supplementary Fig. 9). Under the assumption that 
σ = 0, the maximum likelihood estimation of w is simplified to an ordinary 
least-squares (OLS) regression.

 Ŵ bi i s s s= ( ) ( ) ( )( )−
f f fT T 1

In the second step of the estimation procedure, we relaxed the regularizing 
assumption on σ, and maximized the likelihood of the remaining parameters  
(ρ, t and σ), conditioned on Ŵ. This maximization step was performed numeri-
cally, using a Matlab implementation of the conjugate gradient method. The 
resulting parameter estimates are summarized in Supplementary Figure 10.

After fitting the model to the training data set, we tested the model on the 
held-out (independent) testing data set. By applying Bayes rule and using a flat 
stimulus prior (see below), we obtained for each test trial the posterior probabil-
ity distribution over stimulus orientation given the fitted model parameters 

ˆ ˆ
ˆ

ˆ
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where ˆ ˆ{ , ˆ , ˆ , ˆ} = W r s , and the normalization constant ̂ ˆ;θ ∫ ( ) ( )p s p s dsb|   was 
computed numerically. The circular mean of the posterior served as an esti-
mate of the presented stimulus orientation, and its circular s.d. as a measure of 
the degree of uncertainty in the orientation estimate. Both of these summary 
statistics were computed using numerical integration. The cross-validation pro-
cedure was repeated until each run served as a test run once, resulting in a single 
posterior probability distribution for each trial of BOLD activity.

The prior. Unlike our decoding algorithm, human observers appear to employ 
in their behavior a more naturalistic prior favoring cardinal orientations16. Would 
it have been more appropriate to apply such a non-uniform prior in our analyses? 
The answer to this question is negative. From a decoding perspective, a uniform 
prior correctly represents the a priori knowledge that all orientations were presented 
equally often in the current experiment. Had we instead used a prior favoring cardi-
nal orientations, this would have (wrongfully) biased the decoder’s estimates toward 
horizontal and vertical orientations, and automatically changed the width of the 
posterior distribution for cardinal and oblique orientations, even when there was 
no evidence for an oblique effect in brain activity.

Behavioral data. The observer’s behavioral error on a given trial was computed 
as the acute-angle difference between the reported orientation and the presented 

(6)(6)

(7)(7)

(8)(8)

(9)(9)

orientation. Behavioral variability was calculated after correcting for an orienta-
tion-dependent shift in mean (Supplementary Fig. 6), by fitting a 4-degree poly-
nomial to each observer’s behavioral errors as a function of stimulus orientation. 
We then used the residuals from this fit, i.e. the bias-corrected behavioral errors, 
in our calculation of behavioral variability.

In general, participants finished adjusting the probe’s orientation well before 
the end of the response window, taking on average 2,254 ± 47 ms (mean ± s.e.m.) 
to respond. On 0–6 trials (out of 180–324), the behavioral error exceeded the 
mean error (for that observer) by more than 3 s.d., suggesting that the participant 
randomly guessed the orientation of the grating. These trials were excluded 
from further analysis.

eye tracking. Eye-tracking data were acquired for 12 of 18 subjects, using an 
SR Research Eyelink 1000 eye-tracking system. Gaze position was sampled at  
1 kHz. After removing blinks, we applied a band-pass temporal filter with a low-
frequency cut-off period of 100 s, and a high-frequency cut-off period of 0.1 s. 
Similar to all fMRI analyses, the mean and s.d. of eye position were computed 
for the time window corresponding to stimulus presentation. Specifically, with 
respect to mean eye position, we first calculated the average x- and y-coordinates 
of the gaze data during the first 4 s of each trial, and then took the absolute  
distance from this average (x, y) position to the central fixation target. Eye move-
ment (that is, variability in eye position) was quantified by first calculating, for 
each sample of (x, y) gaze coordinates, the absolute distance to the mean (x, y) eye 
position. This distance was then averaged across the first 4 s of each trial.

Statistical procedures. Decoding accuracy was computed by taking, for each 
individual observer, the circular correlation coefficient between the presented 
and decoded orientations. This correlation coefficient was subsequently Fisher 
transformed and standardized to a Z-score across observers. Its (two-sided)  
P value was derived from the inverse cumulative normal distribution, and the 
average of the Fisher transformed values was converted back to the correlation 
scale for reporting.

Many of our analyses focused on the relationship between decoded uncertainty 
and across-trial error distributions. For these analyses, data were binned and sum-
mary statistics were computed for each bin. When testing for an oblique effect 
in BOLD activity, trials were sorted into four equally spaced bins of increasing 
angle between the stimulus orientation and the nearest cardinal axis (for illus-
trative reasons, Fig. 1b shows the data sorted into 12 equally spaced orientation 
bins). Behavioral variability was computed as the circular s.d. of all (bias-corrected) 
behavioral errors in each of the bins. When testing for the link between decoded 
uncertainty and behavioral variability or bias, trials were sorted into four bins of 
increasing decoded uncertainty. Behavioral variability was computed as the circular 
s.d. of all (bias-corrected) behavioral errors in each of the bins, while behavioral bias 
was calculated as the mean of all (biased) behavioral errors in the bins. We used the 
same number of bins for each participant (four), with a constant number of samples 
across bins within each participant. To test whether decoded uncertainty was corre-
lated with the variable of interest, we calculated partial correlation coefficients via a 
multiple linear regression analysis. Independent variables were distance to cardinal 
axis (Fig. 1b–d and Supplementary Fig. 1d–f) and decoded uncertainty (Fig. 1c,d 
and Supplementary Fig. 1c,e–f). All regression analyses furthermore included 
subject-specific intercepts to remove between-subject variability. Dependent vari-
ables were decoded uncertainty (Fig. 1b and Supplementary Fig. 1d), behavioral 
variability (Fig. 1b,c and Supplementary Fig. 1e), and behavioral bias (Fig. 1d 
and Supplementary Fig. 1f). The significance of individual regression coefficients 
was assessed with a (two-sided) t test. We verified that the residuals of all regres-
sion analyses were independent (Durbin-Watson test) and normally distributed 
(Anderson-Darling test), and that our results were not affected by violations of 
homoscedasticity. For ease of exposition, regression coefficients were standardized 
to partial correlation coefficients, and in Figure 1c,d, data are displayed in the form 
of partial residual plots, showing the partial relationships of interest and residuals 
obtained from the regressions (but omitting any effects of the variables-of-no- 
interest, as well as between-subject differences in intercept).

code availability. Custom code written in Matlab is available on request.
A Supplementary methods checklist is available.
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