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Learning receptive fields using predictive feedback
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Abstract

Previously, it was suggested that feedback connections from higher- to lower-level areas carry predictions of lower-level neural activ-
ities, whereas feedforward connections carry the residual error between the predictions and the actual lower-level activities [Rao, R.P.N.,
Ballard, D.H., 1999. Nature Neuroscience 2, 79–87.]. A computational model implementing the hypothesis learned simple cell receptive
fields when exposed to natural images. Here, we use predictive feedback to explain tuning properties in medial superior temporal area
(MST). We implement the hypothesis using a new, biologically plausible, algorithm based on matching pursuit, which retains all the fea-
tures of the previous implementation, including its ability to efficiently encode input. When presented with natural images, the model
developed receptive field properties as found in primary visual cortex. In addition, when exposed to visual motion input resulting from
movements through space, the model learned receptive field properties resembling those in MST. These results corroborate the idea that
predictive feedback is a general principle used by the visual system to efficiently encode natural input.
Published by Elsevier Ltd.
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1. Introduction

Neurons in primary visual cortex (V1) respond to bars
of different orientation (Hubel and Wiesel, 1968; Jones
and Palmer, 1987), neurons in extrastriate cortex respond
to angles and contours (Pasupathy and Connor, 1999;
Hedgé and Van Essen, 2000), and neurons in area MST
respond to optic flow (Orban et al., 1992; Duffy, 1998).
How do these selectivities come about? A longstanding
approach to understanding selectivity has been to consider
it in terms of efficient coding of natural images (e.g., Bar-
low, 1961; Atick, 1992; Olshausen and Field, 1996). Natu-
ral stimuli are typically very redundant, and a direct
representation of these signals by the array of sensory cells
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would be very inefficient. It has therefore been argued that
the role of early sensory processing is to remove redun-
dancy in the input, resulting in a more sparse and statisti-
cally independent output.

Building on these early ideas, it was posited that early-
level response properties might result from predictive feed-
back (Rao and Ballard, 1999). Specifically, given that the
visual system is hierarchically organized and that its con-
nections are almost always reciprocal (Felleman and Van
Essen, 1991), Rao and Ballard proposed that higher-level
areas predict lower-level input through feedback connec-
tions, while lower-level areas signal the difference between
actual neural activity and the higher-level predictions. This
removes redundancy in the input by removing the predict-
able. To test the hypothesis, Rao and Ballard trained a
computational neural network model on image patches
taken from natural scenes. After training, tuning properties
of the model neurons resembled tuning properties found
for neurons in area V1 and V2, corroborating the predic-
tive feedback hypothesis.
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Fig. 1. Hierarchical model for predictive coding. (A) General architecture.
Higher-level units attempt to predict the responses of units in the next
lower level via feedback connections. Lower-level units signal the
difference between the higher-level predictions and the actual activity
through feedforward connections. Difference signals are then used to
correct higher-level predictions. (B) Components of a module. Feedfor-
ward connections encode the synaptic weights UT, coding units maintain
the current estimate of the input signal and convey the top-down
prediction Ur to the lower level via feedback connections. Difference units
compute the difference (I � Ur) between current activity I and its top-
down prediction Ur.

126 J.F.M. Jehee et al. / Journal of Physiology - Paris 100 (2006) 125–132
From anatomical studies it is clear that a hierarchical
feedforward–feedback design is characteristic of many sen-
sory areas (Felleman and Van Essen, 1991). This suggests
that predictive feedback might be a general mechanism by
which neuronal tuning properties are formed. In this paper,
we use the predictive coding framework to explain receptive
field properties as found in MST. Neurons in area MST
respond to planar, radial, and circular motion, which are
components of optic flow—optic flow refers to perceived
motion of the visual field resulting from an individual’s
own movements through space. The area receives connec-
tions primarily from middle temporal area (MT), where
neurons code for magnitude and direction of motion in
small regions of the visual field (Maunsell and Van Essen,
1983; Allbright, 1984). We will show that, using the hierar-
chical predictive coding model, neurons tuned to optic flow
naturally emerge when presented with local motion fields.

The Rao and Ballard implementation exhibited sparse
coding (i.e., encoding of input with a small set of active
neurons, see e.g., Olshausen and Field, 1996), which was
inspired by minimum description length theory (MDL)
(Rissanen, 1978; see also Grunwald et al., 2005). MDL
chooses as the best model for a given set of data the one
that leads to the largest compression of the data. Although
this theory has an attractive information–theoretic formu-
lation, robust algorithms that realize its promise have
exhibited delicate convergence behavior. Here, we show
that a new algorithm based on matching pursuit (Mallat
and Zhang, 1993) has fast convergence properties and good
behavior with respect to the MDL metric. Moreover,
matching pursuit has a straightforward hierarchical imple-
mentation, and, as an emergent property of the algorithm,
results in a sparse neural code. We illustrate the algorithm
by modeling the connections between Lateral Geniculate
Nucleus (LGN) and primary visual cortex. We show that
our new mathematical implementation of the predictive
feedback hypothesis not only reproduces orientation tun-
ing as found for simple cells in cortical area V1, but also
captures tuning to optic flow as found in MST cells.

2. Model

2.1. General architecture

Higher-level units try to predict the responses of units
in the next lower level via feedback connections. Lower-
level units signal the difference between the higher-level
predictions and the actual activity through feedforward
connections. Difference signals are then used to correct
higher-level predictions. Thus, each module consists of
two kinds of cells: coding units (‘predictive estimators’)
and difference-detecting units (Fig. 1). If a lower-level mod-
ule has information for the receptive fields in a more
abstract higher-level module, then its coding units connect
to the difference-detecting units of that module. Higher-
level units have larger receptive fields. Cortical hierarchies
can be built by combining modules. Here, we consider only
one hierarchical level for each of two circuits. One simu-
lates the LGN–V1 feedforward–feedback circuit and the
other simulates the MT–MST feedforward–feedback
circuit. The model can easily be extended to more levels.
2.1.1. LGN and V1

Scenes are 768 by 768 black-and-white images of natural
surroundings (Fig. 2), preprocessed by filtering with a zero-
phase whitening/lowpass filter (Atick, 1992; Olshausen and
Field, 1996)

Rðf Þ ¼ f e�ðf =f0Þ4

and subtracting the mean, where f stands for spatial fre-
quency and f0 = 300 cycles/image. The pixel values ob-
tained in this way are taken as the initial activation values
of neurons in the first layer, which would correspond to
the LGN. The second layer, which would correspond to a
small part of cortical area V1, is represented by 128 units.
We limit the LGN input into model V1 to 8 by 8 pixels
(or 64 LGN cells). Such 8-by-8 image ‘patches’ are ran-
domly selected from the filtered input image, represented
as a single vector, and fed into the V1 model neurons using
feedforward connections. In the language of matching pur-
suit, we say that these feedforward connection weights from
LGN to each of the V1 neurons constitute a basis vector.
Basis vectors are initialized with random values and zero
mean and then constrained to have unit length.
2.1.2. MT and MST
Image sequences consist of ten frames each and have a

resolution of 480 by 480 pixels. They come from two differ-



Fig. 2. Receptive fields of model V1 units after training on natural images. (A) Subset of natural images used for training. The circle denotes model V1
receptive field size. (B) Learned V1 receptive fields. Plots are scaled in magnitude so that each fills the gray scale, but with zero always represented by the
same gray level. Black is negative, white is positive.
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ent sources: half of the sequences are synthetic images
obtained from models constructed in OpenSceneGraph
(toolkit available online: http://www.openscenegraph.org/)
and moving the virtual camera in the scenes according to
translations and rotations. Combinations of translations
or rotations along two axes are used in each sequence.
The other half of the image sequences are obtained from
real-world image recordings of human subjects walking in
wooded areas and a cityscape. A digital video camera with
an equivalent focal length of 40 mm was mounted on a hel-
met subjects wore while locomoting (Pelz and Rothkopf, in
press). From these image sequences dense optical motion
fields (represented as vectors pointing in the direction of
motion) are computed using a multiscale implementation
of the Lucas–Kanade tracker (Lucas and Kanade, 1981).
The resulting motion fields are averaged over regions of
size 30 by 30 leading to a motion field representation of
256 motion vectors arranged in a 16 by 16 array. Motion
vectors are centered and whitened by subtracting their
means and the singular value decomposition of their
covariance, respectively (see Jabri et al., 2000; for similar
preprocessing steps). The obtained values are used as initial
activation values of the 256 units in the first layer, which
would correspond to cortical area MT. The second layer,
which would correspond to a small part of area MST, is
represented with 128 neurons. The feedforward connectiv-
ity structure (‘basis vector’) into each MST unit is 16 by 16
in size, and initialized with random values and zero mean.
At each new matching pursuit cycle (see below), one of the
motion fields is randomly selected, represented as a single
vector of unit length, and fed into the algorithm.
2.2. Network dynamics and learning

As previously indicated, the synaptic weights which
drive a (let us say) V1 neuron form a basis vector which
represents the preferred stimulus of that neuron. The
action of many such V1 neurons is to predict the (say)
LGN input, I, as a linear combination of N basis vectors,
where the weighting coefficient of each basis vector ui is
given by the response ri of its corresponding V1 neuron.
In this way, the original input can be predicted using the
activity in V1 by simply applying the linear transformation

I �
XN

i¼1

riui

The typical matching-pursuit algorithm seeks to provide an
accurate prediction of the input using the least number of
basis vectors or equivalently the least number of active
V1 neurons (Mallat and Zhang, 1993; see also Appendix).
This is accomplished iteratively by first determining which
of the 128 basis vectors best predicts the input, or equiva-
lently, by finding the V1 neuron whose receptive field struc-
ture best matches the LGN input. This is done by
determining which basis vector maximizes the inner prod-
uct with the LGN input. The best-matching basis vector
weighted by the neuronal response r (given by the maximal
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Fig. 3. Convergence of the matching pursuit algorithm for one represen-
tative image patch after training. Amount of overlap was computed by
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inner product) is then subtracted from the input, and the
process is repeated on the residual input. After k iterations
the residual input is given by

DIk ¼ DIk�1 � rik uik ¼ I�
Xk

l¼1

ril uil

and the next neuron is chosen by again determining which
of the remaining V1 basis vectors best predicts this residual
input. In a neural network, the subtractive process is car-
ried out using feedback connections, so that at each itera-
tion of the algorithm the residual input is described by
the activity of the LGN and the projection of the residual
input onto the remaining basis vectors is implemented
using feedforward connections from the LGN to V1.

To better capture the input statistics in the future and
enhance the sparseness of the neural code, basis vectors
are incrementally updated in each feedforward–feedback
cycle. This is done by minimizing the description length
of the joint distribution of inputs and neural responses
(Appendix). In earlier work (Rao and Ballard, 1999),
sparseness was achieved by the a priori assumption that
the distribution of neural responses is of a particular form
that does not necessarily correspond to the correct neural
response distribution. Here, we do not specify a (possibly
incorrect) sparse prior distribution, but rather create a
sparse code via the action of the matching pursuit algo-
rithm, which generates a prediction and then learns recep-
tive fields/basis vectors to better make predictions in the
future. This is a slightly different notion of both sparsity
and optimality than previously used as it is based on an
analysis of the algorithm rather than on an assumption
that the inputs were generated by a specific probabilistic
model (Appendix). However, this new learning algorithm
causes the model to converge quickly to a set of basis vec-
tors that optimally capture the input statistics and allow for
making predictions thereof. In the appendix, we show that
the optimal learning rule is well approximated by a local
learning rule, which takes the form of the traditional Heb-
bian rule:

Duik ¼ chrik DIk�1i

where c is given by 0.3/(1 + b), and b is initially equal to 1
and increases by 1 every 1000 image patches. Parameter
values are kept constant throughout all simulations. The
model is allowed to process each image patch using four
feedforward–feedback cycles. Basis vectors are updated
and then normalized each time a neuron is chosen in one
of the feedforward–feedback cycles. The V1 basis vectors
are trained on 10 000 image patches extracted from 16 nat-
ural images. MST basis vectors are trained on motion fields
extracted from 640 natural image sequences.
taking the dot product between a presented image patch and the linear
combination of basis vectors chosen by the matching pursuit algorithm,
weighted by their responses. Fewer steps are needed after training (solid
line) than before training (dashed line). The small number of steps is a
consequence of our algorithm and corresponds to a correspondingly small
number of V1 neurons used to represent the stimulus.
3. Results

To test the predictive coding hypothesis, we trained our
matching pursuit model on image patches extracted from
natural scenes, the motivation being that receptive field
properties might be largely determined by the statistics of
their natural input (see also, Field, 1987; Atick, 1992;
Dan et al., 1996; Rao and Ballard, 1999). After exposure
to several thousand natural image patches, the basis vec-
tors learned by the model show orientation tuning as found
for simple cells in V1 (Fig. 2). The basis vectors determine
the feedforward responses, and can be considered as classi-
cal receptive fields of the higher-level units.

To explicitly test the matching-pursuit model on sparse-
ness, we calculated the number of feedforward–feedback
loops needed to accurately predict the input by computing
the amount of overlap between a presented image patch
and the linear combination of basis vectors chosen by the
algorithm in each successive feedforward–feedback loop,
weighted by their responses. Fig. 3 shows the amount of
overlap before training (dashed line) and after training
(solid line). After training, the prediction converges with
the visual input after only few feedforward–feedback itera-
tions, which corresponds to choosing the same number of
basis vectors in model area V1. Since there are on the order
of 128 V1 units, the code in this case is extremely sparse.
Similar results are obtained using different image patches.

To test the generality of the predictive feedback
approach, we also trained the model on visual motion
input resulting from movements through space, which
would resemble area MST’s natural MT input. After expo-
sure to visual motion input, basis vectors in the model exhi-
bit tuning to translation and expansion (Fig. 4), which are
components of optic flow. Thus, the model presented here
not only captures V1 receptive field properties, but also
MST receptive field properties in terms of cortico-cortical
feedback used by the visual system to efficiently encode
natural input.



Fig. 4. Feedforward receptive fields of model MST after training
(representative subset). Basis vectors in the model exhibit tuning to
translation and expansion, which are components of optic flow.
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4. Discussion

We have shown that efficiently encoding an image using
predictive feedforward–feedback cycles captures neuronal
receptive field properties as found in primary visual cortex,
as well as receptive field properties of neurons in area MST.
Moreover, the model exhibits sparse coding, which is the
encoding of any particular stimulus with a small set of neu-
rons. These results corroborate the idea that predictive
feedback is a general principle used by the visual system
to efficiently encode natural input. Although we have only
demonstrated the utility of the algorithm for encoding one
hierarchical level of the cortex, the extension to multiple
levels is straightforward. Each module contains two kinds
of neurons: coding neurons and difference-detecting neu-
rons. If coding neurons have an output that can be com-
bined with other outputs to be further coded, they can be
combined at a new module’s difference-detecting neurons.
If a more abstract module wants to effect the code of a
lower-level module, its error output is fed to the input of
the lower-level coding neurons.
Previously, the predictive-feedback framework has been
used to explain endstopping and other extra-classical
receptive field effects in V1 (Hubel and Wiesel, 1968; Bolz
and Gilbert, 1986), which were interpreted as responses
from difference detectors that signal the error between a
higher-level prediction and actual activity (Rao and Bal-
lard, 1999). That is, areas along the visual hierarchy repre-
sent the image with increasing receptive field size, and
higher-level predictions can be made on increasing spatial
context. As a consequence, when a center stimulus matches
the surround, less activity is elicited in lower-level differ-
ence-detecting neurons because the center can be predicted
from the surround through feedback from higher-level
areas. Such a prediction fails, however, when the stimulus
is presented in isolation, generating a much larger response
in the error-detecting neuron (Rao and Ballard, 1999). Sup-
pressed responses are not phenomena restricted to area V1:
similar extra-classical receptive field effects have been
found in other visual areas (Hubel and Wiesel, 1968; All-
man et al., 1985; Bolz and Gilbert, 1986; Desimone and
Schein, 1987; Hubel and Livingstone, 1987). For example,
some neurons in MT are suppressed when the direction of
motion in the surround matches that in the classical recep-
tive field (Allman et al., 1985), and it was conjectured that
these might also be accounted for by predictive feedback
(Rao and Ballard, 1999). We consider these applications
as a topic of future research, and predict that our matching
pursuit model will capture extra-classical receptive field
effects in MT as well.

Other modeling studies have suggested mechanisms for
learning simple cell receptive fields based on competition
between input from LGN on-cells and off-cells (Soodak,
1987, 1991; Tanaka, 1992; Miller, 1994). However, extend-
ing such a mechanism in a straightforward way to other
areas is difficult. In this paper, we presented a general
mechanism for learning receptive fields, and showed that
V1 and MST receptive field properties naturally emerge
when using an efficient hierarchical and predictive strategy
for encoding natural input.

Olshausen and Field (1996) posited that neurons in cor-
tical area V1 could be understood as a sparse code for the
visual stimulus. The idea was that area V1 was trying to
code the stimulus with as few active neurons as possible.
Here, we showed that sparse coding can be thought of as
a case of a general coding principal termed minimum
description length (Appendix, see also Rao and Ballard,
1999), implemented in the model’s feedforward–feedback
loop through the matching pursuit algorithm (Mallat and
Zhang, 1993). Coding an image using such serial feedfor-
ward–feedback computations costs in time, but as the num-
ber of separate projections needed is typically very small,
the total delay is modest. Furthermore, there is a shortcut
when the circuit is part of a hierarchy. The largest projec-
tion is computed first and sent on to higher areas so that
they do not have to wait for the entire computation to set-
tle to get started on their own projection computation.
Subsequent iterations refine the predictions from previous
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cycles in both lower- and higher-level areas. Consistent
with this idea, neurophysiological studies have found
dynamic changes in the tuning properties of neurons in
lower- (Lamme, 1995; Ringach et al., 1997; Hupé et al.,
1998) and higher-level visual areas (Sugase et al., 1999) that
have been shown to result from feedforward–feedback
interactions (Hupé et al., 1998; Lamme et al., 1998).

Recent theories propose that feedforward processing
involves rapid and automatic processes that enable basic
object categorizations, however incorporating a limited
amount of spatial detail (Hochstein and Ahissar, 2002;
Lee et al., 1998; Roelfsema et al., 2000). For a detailed
and complete representation, higher areas would need to
reach back to the lower-level areas via feedback connec-
tions. Lower-level areas contain neurons with smaller
receptive fields than neurons in higher areas, and are in that
respect better suited for signaling of spatial detail. Our
model is compatible with these theories in the sense that
feedback mechanisms are used to highlight information
that was not captured in the first feedforward sweep, but
we put less emphasis on feedback interactions being neces-
sary for processing of spatial detail.

In conclusion, edge selectivity and tuning to optic flow
may result from feedforward–feedback interactions used
by the visual system to efficiently encode natural images.
Given the hierarchical layout of sensory areas (Felleman
and Van Essen, 1991), it is likely that predictive feedback
is a general mechanism used by the sensory system to shape
receptive fields, of which the ones presented here are but
examples.

Acknowledgement

We thank Wei Ji Ma for helpful comments on an earlier
draft of this article.

Appendix

Maximum-likelihood formulation of sparseness

We seek a model that not only accurately predicts its
inputs but also minimizes the number of neurons needed
to predict any given input; in other words, we seek a code
that gives a sparse representation of the input. In the stan-
dard approach (e.g., Rao and Ballard, 1999), sparseness is
enforced via an assumption on the shape of the prior distri-
bution on the neural responses. That is, it is supposed that
the 8-by-8 input patch is predicted by a noisy linear combi-
nation of some basis vectors, i.e.,

I ¼ Urþ gI

where the basis vectors (or receptive fields) are the columns
of the matrix U, r is a vector with neuronal responses and
gI is some additive Gaussian noise which is assumed to be
independent with variance r2. This constitutes a likelihood
function of the form Pr(Ijr) = Normal(Ur,r2). With the
addition of a sparse prior Pr(r) on the responses one then
determines (‘learns’) the maximum-likelihood values for
the basis vectors which make up the matrix of basis vectors
U by maximizing the expected log likelihood, L, of the joint
distribution of I and r, which is given by

L ¼ hlog PrðIjrÞ þ log PrðrÞi

¼ �N
2

logð2pr2Þ � 1

2r2
kI�Urk2 þ log PrðrÞ

� �

for any (input) data set composed of vectors I of length N.
Here kÆk indicates the L2 norm. For a given input, one
builds the vector of neuronal responses r by determining
which neural responses maximize the likelihood of a given
input being observed; in other words, one determines the
most likely responses given this particular input.

Problems with the common formulation of minimum

description length

In MDL, the goal is to minimize the total number of bits
needed to encode both the higher-level neural responses
(the ri’s) and the residual error of the predictions (the errors
represented by the lower-level area) (Rissanen, 1978; see
also Grunwald et al., 2005). There is a link between maxi-
mum-likelihood modeling as shown above and the mini-
mum description length approach. We define the
Kullback–Leiber (KL) divergence between the empirically
observed joint distribution of I and r and the distribution
given by the generative model L (which is specified to be
sparse):

DKLðpðI; rÞ; qðI; rÞÞ ¼ �HðI; rÞ � hlog qðI; rÞipðI;rÞ
where H(I, r) gives the entropy or description length of the
true joint distribution p(I, r), the h i indicate a expected va-
lue with respect to the true distribution p(I, r), and q(I, r) is
the distribution of a proposed generative model (i.e., L

above). If the true model corresponds to the generative
model, the KL divergence would be zero. In that case, max-
imizing the expected log likelihood L would be equivalent
to minimizing the description length. However, since the
KL divergence is positive definite and it is unlikely that
the assumed form of the generative model is correct, we
can conclude that the entropy H(I, r) or description length
of the true distribution p is bounded above by the negative
of the expected log likelihood, i.e.,

HðI; rÞ 6 h� log qðI; rÞipðI;rÞ ¼ �L

This result implies that maximizing the expected log likeli-
hood of a generative model will yield parameter values
which minimize an upper bound on the description length,
regardless of whether or not the chosen prior was indeed a
sparse prior. Thus, though often linked, the information–
theoretic notion of the minimum description length princi-
ple is only indirectly related to the notion of sparseness of
neural activity, as the description length is minimized by a
sparse generative model only when the generative distribu-
tion corresponds to the true distribution. Choosing an
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incorrect prior on the neural responses (regardless of
whether it is too sparse or not sparse enough) has the effect
of leading to an overall increase in the description length.
This result also implies that a sparse prior, like most priors
used in a generative model framework, is an additional
assumption which is imposed upon the data regardless of
whether or not it is appropriate.

Optimizing matching pursuit: a new algorithm for

building a sparse representation

Here, we suggest a more algorithmic approach to build-
ing a sparse neural representation which is based upon
matching pursuit (Mallat and Zhang, 1993). This algorithm
naturally generates a sparse representation and may also be
formulated probabilistically allowing us to utilize the
description length (as opposed to an upper bound) as the
objective function for learning the basis vectors. That is,
rather than specifying an approximate (reads incorrect)
generative model Pr(Ijr) and prior Pr(r), we suggest analyz-
ing the properties of the algorithm which will be used to
generate the neural responses, Pr(rjI), directly. This
approach has the advantage of making no incorrect
assumptions regarding the form of Pr(I) and places only
very natural constraints on the shape of the prior Pr(r).
Moreover, rather than minimizing an upper bound on
the description length this formulation allows for the
description length itself to be minimized directly. Specifi-
cally, note that the description length or joint entropy
H(I, r) can be written in terms of the conditional entropy
of the neural responses:

HðI; rÞ ¼ HðrjIÞ þ HðIÞ
Since the entropy of the inputs, H(I), is independent of any
parameters which are used to give the neural responses, we
can conclude that minimizing the description length is
equivalent to minimizing the conditional entropy of the
neural responses, H(rjI), which means maximizing the ex-
pected log likelihood of the neural responses, hlog Pr(rjI)i.

With this in mind, we now consider a biologically plau-
sible, probabilistic implementation of matching pursuit and
the associated learning rule. In this context, biologically
plausible is assumed to imply two additional constraints:
(1) responses in the model are constrained to be positive,
and (2) the learning rule must be local much like the Heb-
bian learning rule shown above (Section 2). Since typical
matching pursuit generates its neural responses iteratively
we will also choose the kth neuron by sampling from the
distribution

Prðik ¼ jjDIk�1; fi1 . . . ik�1gÞ

¼ Hðuj � DIk�1Þ expðauj � DIk�1ÞP
j

Hðuj � DIk�1Þ expðauj � DIk�1Þ

where ik is the index of the kth neuron, uj is the basis vector
associated with the jth neuron, H(x) is the Heaviside func-
tion and a�1 = 1/10 is a temperature parameter. Once a
neuron has been selected, the actual response of that neu-
ron is drawn from a normal distribution with mean given
by uik � DIk�1 and small variance r2. Evaluation of the gra-
dient of the conditional entropy generated from this distri-
bution leads to terms that are either non-local or
approximately proportional to rik DIk�1. From this, we con-
clude that the optimal local learning rule takes the form of
the traditional Hebbian rule:

Duik ¼ chrik DIk�1i
where c is a learning rate (see also Section 2).

Note that this learning rule may also be obtained from
the gradient of the error function for the kth iteration, i.e.,

oEk

ouik

¼ o

ouik

kDIk�1 � rik uikk
2 ¼ 2rik DIk�1
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