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Recent theories of visual perception propose that feedforward cortical processing enables
rapid and automatic object categorizations, yet incorporates a limited amount of detail.
Subsequent feedback processing highlights high-resolution representations in early visual
areas and provides spatial detail. To verify this hypothesis, we separate the contributions of
feedforward and feedback signals to the selectivity of cortical neurons in a neural network
simulation that is modeled after the hierarchical feedforward–feedback organization of
cortical areas. We find that in such a network the responses of high-level neurons can
initially distinguish between low-resolution aspects of objects but are ‘blind’ to differences
in detail. After several feedback–feedforward cycles of processing, however, they can also
distinguish between objects that differ in detail. Moreover, we find that our model captures
recent paradoxical results of crowding phenomena, showing that spatial detail that is lost in
visual crowding is nevertheless able to evoke specific adaptation effects. Our results thus
provide an existence proof of the feasibility of novel theoretical models and provide a
mechanism to explain various psychophysical and physiological results.
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1. Introduction

Within 40ms after the light of an image hits the retina, cells in
the primary visual cortex (V1) start to fire. The very first spikes
already express orientation and spatial frequency selectivity.
The same applies to cells in extrastriate areas that, only 10 ms
later, instantaneously code for color,motion, stereo depth, etc.
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Even the highest levels of selectivity, such as face versus non-
face in inferotemporal cortex, appear to be already expressed
some 80–120ms after the image is presented (Oramand Perret,
1992). A great part of object recognition is thus already
established during the initial fast feedforward sweep of
information transfer.
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Fig. 1 – Contextualmodulation. AV1neuron responds stronger
when its classical receptive field lieswithin the square (top) than
when the neuron is stimulated by identical background
elements (bottom). Black circles denote the classical receptive
field. Gray area (top right) is the response difference between
figure and ground. Modified from Lamme (1995).
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From anatomical studies it is clear, however, that cortico-
cortical connections not only run from lower areas to higher
ones, but also in the reverse direction (Salin and Bullier, 1995).
These fibers provide feedback signals that may play a role in
object recognition as well. For example, it has been hypoth-
esized that these feedback signals are necessary to process
spatially detailed information (Hochstein and Ahissar, 2002).
In this framework, feedforward processing involves rapid and
automatic processes that provide basic object categorizations,
yet incorporating a limited amount of detail. For a detailed and
complete representation, higher areas would need to reach
back to the low-level areas by means of cortical feedback
mechanisms. Low-level areas contain neurons with smaller
receptive fields than neurons in higher areas and are in that
respect more suitable for the signaling of spatial detail
(Hochstein and Ahissar, 2002; Lee et al., 1998; Roelfsema
et al., 2000).

Recordings from face selective cells in the inferotemporal
cortex are consistent with such an idea: these neurons
convey two different modes of information in their firing
patterns, starting at different latencies: global information
(“is it a face or a non-face?”) is transmitted in the initial part
of the response and more detailed information (“who's face
is it?”) is transmitted later, beginning on average about
50 ms after global information (Sugase et al., 1999). Such
dynamic changes in the tuning properties of IT neurons
seem compatible with feedback interactions with lower
visual areas, but whether this is the case has not yet been
firmly established. It could equally well be that the two
types of information are carried by parallel feedforward
streams (such as the magno- and parvocellular inputs)
having different latencies, one of which carries low-resolu-
tion information, while the other carries high-resolution
information.

To verify which of these hypotheses is correct, it would be
necessary to separate the contributions of feedforward and
feedback signals to the selectivity of cortical neurons, which is
notoriously difficult in in-vivo preparations. Some attempts
have been made (Hupé et al., 1998; Lamme, 1995; Roelfsema
et al., 1998). An example, in the context of scene segmentation,
is shown in Fig. 1. Scene segmentation may benefit from
interactions between higher and lower visual areas when
segregation of a figure from the background is necessary at
high spatial resolution (Roelfsema et al., 2000); effects of these
interactions would, among others, manifest themselves in
lower visual areas. Indeed, presented with the texture-defined
square, neurons in V1 respond stronger when their receptive
fields lie within the square than when they are stimulated by
identical background elements, evenwhen the square ismuch
larger than the classical receptive field size (Lamme, 1995).
This contextual modulation typically occurs at some delay
with respect to the visual response itself and is abolished
when V1 is isolated from feedback from higher areas (Lamme
et al., 1998a). Other studies confirm the idea that feedback
from extrastriate areas is necessary for V1 cells to signal
figure-ground differences (Hupé et al., 1998).

To isolate the potential contribution of feedforward and
feedback signals to the receptive field tuning properties of
cortical neurons, computational neural network models
provide a useful tool. Here, we study these contributions in a
simulation that is modeled after the hierarchical feedforward–
feedback organization of cortical areas with increasing
receptive field size, as is found in the ventral stream of
primates. We ask the following questions:

1. In the recurrent models, the higher areas ‘reach back’ to
lower areas to find high-resolution information that was
not provided by the feedforward sweep. Given the absence
of direct connections between low-level areas such as V1
and motor areas (Felleman and Van Essen, 1991), this
implies that the only way to report about these details
would be via the higher areas. So, thesewill have to express
that high-resolution information in some way by differen-
tially firing to patterns that differ in their details. How do
these high-level neurons in the end obtain their tuning to
spatial detail? Is this possible for cells with large receptive
fields (but see DiCarlo and Maunsell, 2003)? Does this not
disturb their original tuning properties?

2. Detailed spatial features of an individual item can be more
difficult to identify when other shapes are near it, a
phenomenon known as crowding (Bouma, 1970; Toet and
Levi, 1992). Global features of the stimulus set as a whole,
such as the average orientation of a group of tilted patches,
can nonetheless be reported under crowding conditions
(Parkes et al., 2001). If top–down feedback interactions
process spatial detail, this suggests that they do not come
about for individual items when other shapes are in the
vicinity. Paradoxically, however, spatial detail that is lost in
crowding nevertheless is able to evoke specific adaptation
effects (He et al., 1996). Can we explain both the loss of
spatial detail in crowding and the paradoxical adaptation
to these details in the same framework?

Here, we study these questions in the context of texture
segregation, for which top–down feedback processes strongly
related to a conscious report have been observed (Lamme



Fig. 2 – Architecture of the connections of the model. (A) The
model is composed of five areas. Each area uses neurons
with two feature selectivities, ‘left-tilted’ and ‘right-tilted.’ At
each higher level in the model, the number of units
decreases, and the size of the receptive fields increases. (B)
Inter-areal connections. Each area is subdivided into
feedforward and feedback layers. Units of the feedforward
layer excite units with similar feature selectivity in the next
higher level (connection type 1). Feedback connections excite
units with similar feature selectivity (connection type 5) and
inhibit units with the opposite feature selectivity (connection
type 6) in the next lower area. (C) Intra-areal connections. In
the feedforward pathway, neighboring units with similar
feature selectivity inhibit each other (connection type 3).
Units in the feedforward pathway and feedback pathway are
interconnected via excitatory connections (connection type 2
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et al., 1998b, 2002; Supèr et al., 2001). We use a recurrent
neural network model that faithfully simulates these
texture-segregation-related processes in V1 in a normal
situation, and when the area is isolated from feedback, and
compare the firing rate of the model's temporal cortex neurons
in these two conditions. We simplify the object recognition
aspect of the temporal cortex neurons to the extent that we
consider a neuron's response as indicative of object discrimi-
nation whenever its responses reflect differences between
objects. This is not the strong type of object selectivity that is
traditionally observed in temporal cortex neurons, butwe argue
that the selectivity of our neurons could easily be amplified to
obtain strong selectivity if further processing stageswere added
to themodel.We furthermore consider twoverybasic aspects of
shape selectivity, namely selectivity for the overall length of the
contour that encloses an object, and the surface area that is
covered by an object. These are abstractions of the tuning
properties usually found for cells in TE, though it is not unlikely
that responses of TE neurons do in fact reflect such object
parameters. For example, Sary et al. (1993) studied cue invariant
shape tuning of TE neurons using stimuli like squares, crosses,
stars etc., which differed along various dimensions. It is not
clear what feature dimensions were critical in mediating the
strong selectivity of TE cells found in that study. One of these
dimensions, however, could have been the contour–surface
ratio. Hence, we use three stimuli (a bar, a square and a cross),
two of which (the bar versus the other two) differ in the first
aspect (contour length) and two of which (the square and the
cross) only differ in the last aspect (figure area). We study to
what extent selectivity to contour lengthand figure areadepend
on feedforward versus re-entrant processing.
and 4). Arrow: excitatory connection; open circle: inhibitory
connection.
2. Results

2.1. A re-entrant model for texture segregation

We use as starting point the model of Roelfsema et al.
(2002) and its main principles for texture segregation. The
model was first motivated to resolve the ‘grouping–segmen-
tation paradox’ (Roelfsema et al., 2002), which refers to
conflicting constraints posed on neural architecture by
grouping (similar image elements should support each
other to allow grouping of coherent image regions) and
segmentation (similar edge elements should inhibit one
another to allow boundary detection and pop out). The
model uses a hierarchical architecture to combine the
apparently conflicting connection schemes. Within an
area, neurons with similar feature preference inhibit each
other to ensure detection of boundaries and singletons.
These connections are inspired by models of boundary
detection and pop out that use inhibitory connections
between neurons of similar feature preference coding for
nearby locations in the visual field (Grossberg and Mingolla,
1985; Li, 1999; Malik and Perona, 1990; Stemmler et al.,
1995). Between areas, neurons with similar feature prefer-
ence support each other via the model's feedback connec-
tions to allow grouping of figural regions (Roelfsema et al.,
2002). The model (Fig. 2) is composed of five areas,
corresponding to areas V1, V2 and the ventral stream
areas V4, TEO and TE. Each area is subdivided into
feedforward and feedback layers that interconnect via
laminar connections, similar to the laminar division of
feedforward and feedback synapses in cortex (Felleman and
Van Essen, 1991). Each area uses only two receptive field
selectivities, which will be referred to as ‘left-tilted’ and
‘right-tilted’, but these could be replaced by others. More
features could be added without changing the overall
network behavior. The image is represented at a coarser
resolution in each successive area of the hierarchy.

2.2. Feedforward activation detects texture-defined objects,
yet lacks spatial detail

To illustrate the model's general behavior, we will first
discuss its response to a texture-defined square when only
feedforward and horizontal connections are available to the
model (Fig. 3). The image activates pools of neurons that are
tuned to the left-tilted and right-tilted orientations. As soon
as the first activity evoked by the image reaches V1,
interactions between neighboring neurons start. Neurons
that have their receptive field on the boundary receive less
inhibition from their neighbors and have the strongest
response. Boundary detection occurs for neurons with either
feature selectivity and can therefore also be seen when the



1 In fact, all three stimuli differ in figure area. However, the
difference in area between the cross and the square is much
larger than the difference between the cross and the bar. Thus, if
area were (also) driving the TE response, the cross and square
would have evoked different responses in TE. As this is not the
case, we feel it is safe to conclude that in the feedforward model
contour length alone is driving the responses of the TE neurons.

Fig. 3 – Activity in the feedforward model. (A) Activity profile of the five layers 65 ms after presenting the stimulus. To
compare between figure and background, activity is summed across the two feature selectivities. Gray levels indicate different
response strengths: light shades correspond to regions of high activity, dark regions correspond to regions of low activity.
Higher areas represent the image at a coarser resolution. (B, upper) The three texture-defined stimuli used in this study: a
square, a bar and a cross. (B, lower) Temporal activity profile of a TE unit that responds to the three shapes. The neuron
discriminates between a bar and the other two objects, but not between a square and a cross.
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activity in the two maps is summed. Note that, in lower
areas, the summed activity evoked by the interior of the
figure is as strong as the summed activity evoked by the
background. This pattern of activity resembles that of
monkey V1 neurons, which detect boundaries but no figural
regions in animals with extrastriate lesions (Lamme et al.,
1998a; see also Roelfsema et al., 2002). Meanwhile, in higher
areas, more and more neurons become active and start to
interact. These neurons represent the same image, though with
reducing spatial resolution for each successive layer in the
hierarchy.Therefore, if thehierarchy isascended, theboundaries
‘merge’ into blobs of elevated activity, until an area is reached
where the image evokes activity in a single or very few neuronal
pools. Note that blobs of elevated activity appear in the summed
activity profile because fewhigher-level neurons are activatedby
the image regions, resulting in little inhibition, whereas model
neurons tuned to the background are strongly inhibited by
activated neighbors of similar feature preference.

The limited spatial resolution of the high-level represen-
tation (in TE) is illustrated by the fact that these neurons'
responses do not distinguish between all possible shapes.
Fig. 3B shows the responses of TE neurons to the texture-
defined bar, cross and square. The temporal activity profile of
TE neurons that respond to the shape discriminates between a
texture-defined bar and the other two stimuli, but not between
the texture-defined square and cross. This was a general
finding for all TE neurons tuned to both texture orientations.
In other words, on the basis of the feedforward and horizontal
interactions, the TE neurons can distinguish between shapes
with different contour length, but not between shapes that
have an equal contour length but differ in figure area (the
square and the cross).1 This makes sense as these network
connections function as texture contour detectors.

2.3. Re-entrant processing adds selectivity for spatial
detail to TE neurons

Let us now consider the model's behavior when feedback
connections are added and re-entrant cycles of feedback–
feedforward interactions are allowed. The spatially blurred
blob of activity in area TE that results from stimulation with a
square is fed back to lower areas. This results in a gradual
enhancement of responses to the interior of the figure in
lower areas (‘filling-in’), such that neurons responding to the
figure region are now activated more strongly than neurons
responding to the background (Fig. 4, left), mimicking the
neurophysiological results obtained in monkey V1 with
texture-defined squares (Lamme, 1995; Lamme et al., 1999).
In neurophysiology, responses to texture boundaries are
enhanced first and responses to the figural area are enhanced
later in time, and model V1 responses follow the precise time
course of these responses in primary visual cortex (see
Roelfsema et al., 2002 for a detailed comparison of V1
responses). Even though the feedback comes from a spatially



Fig. 4 – Activity in the recurrent model. (Left) Summed V1
response to each of the three texture-defined shapes of Fig. 3
after 165 ms. The activity profile is presented in the same
format as in Fig. 3. The responses of neurons that cover the
interior of the shapes are enhanced relative to
the background, which can be viewed as a marker of
top–down feedback processes. (Right) Temporal activity
profile of TE neurons to the three shapes. The neurons
initially only discriminate between the texture-defined bar
and the other two shapes, but at longer latencies they also
discriminate between the texture-defined cross and square.

Fig. 5 – Crowding in the recurrent model. (A) Stimuli are
widely separated. (Left) Schematic display of stimuli. The
circle represents the receptive field region where activity of
the recorded TE unit exceeds half its maximum rate. (Middle)
The summed V1 response to the stimuli after 165 ms. The
activity profile is presented in the same format as in Fig. 3.
(Right) The temporal activity profile of TE neurons to the
crosses and squares. Red: activity to the four stimuli; blue:
activity to the same four stimuli, but a cross anda squarehave
swapped locations. Widely separated stimuli evoke clearly
different responses in our TE neurons. (B) Stimuli in close
proximity. The firing rate of TE neurons is identical
irrespective of the spatial locations of individual crosses or
squares, but filling in of the individual shapes at the level of
V1 is still spatially selective. (C) Different compositions of the
stimulus arrays. Blue is the TE activity to two squares and two
crosses, red is the activity to four squares. The TE neurons
respond differently to different compositions of the object
arrays, even though individual selectivity has been lost. (For
interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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diffuse higher-level representation, the filling-in activity
perfectly respects the boundaries of all three objects.

The filling-in signal at lower levels provides an additional
feedforward input, so that now the surface area is also
influencing high-level responses. This is reflected in the
temporal activity pattern of the neurons in TE (Fig. 4, right).
Initially, the neurons only discriminate between the texture-
defined bar and the other two shapes, but at longer latencies
they also discriminate between the texture-defined cross
and square, which have equal boundary length, but differ in
figure area. Although we have used different stimuli, the
difference between the peak of activity elicited by boundary
length of the square and the peak elicited by its area is
within the range of differences between peaks of global and
fine information as reported by Sugase et al. (1999) for face-
selective neurons in inferotemporal cortex (66 ms in the
model vs. 51±39 ms in inferotemporal cortex).

2.4. The re-entrant model explains crowding phenomena

We use the same parameters as above and test our re-entrant
model on crowding. Our model aims to capture three findings
related to crowding. The first is that crowding effects are
negligible (or stimuli are easily identified) when the spatial
distance between stimuli is large, they become more pro-
nouncedwhen this distance is reduced, until at somedistance,
identification of individual stimuli is hindered severely (Parkes
et al., 2001). The same is observed in ourmodel with respect to
the figures that are only identified after recurrent processing,
i.e., the squares and crosses. Squares and crosses that are
widely separated evoke clearly different responses in our TE
neurons (Fig. 5A).When these stimuli come in close proximity,
however, the TE neurons lose their selectivity for individual
objects: their firing rates are identical irrespective of the spatial
locations of individual crosses or squares (Fig. 5B). Because
stimuli are presented at different spatial locationswith respect
to the TE receptive field center in this case (cf. Fig. 4), we also
presented the model the same stimuli in isolation at these
locations. Presented in isolation, squares and crosses evoke
differential responses in the TE neurons (data not shown),
ruling out the possible confound of spatial location.

A second observation that has been made is that features
of objects that are lost in crowding may nevertheless induce
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selective adaptation effects, presumably in lower-level areas
(He et al., 1996). Consistent with this empirical observation,
the filling-in of the individual shapes at the level of model V1
is still spatially selective and remains confined to the exact
stimulus shape, even in a condition of crowding at higher
levels (Fig. 5B).

A third observation is that in conditions of crowding the
average stimulus content is still accessible for a subject's
report (Parkes et al., 2001). In our case, that would imply that,
at the level of TE, it wouldmatterwhether the array consists of
only squares or only of crosses or of a mixture of both. We
indeed observe that the model TE neurons respond differently
to different compositions of the object arrays, even though the
individual selectivity is lost (Fig. 5C). In summary, our model
explains three important aspects of crowding phenomena and
solves apparent contradictions within these phenomena.
3. Discussion

3.1. Dynamical tuning properties of TE neurons

We have shown that single neurons in model TE reveal two
different modes of information in their firing patterns, starting
at different latencies, one of which results from feedback
interactionswith lower-level areas.With the initial feedforward
sweep, the TE neurons can detect a segregating texture-defined
stimulus. However, only after additional feedback–feedforward
passes, the neurons also distinguish between stimuli of
different shape. More precisely, the feature that is detected
during the feedforward sweep of our model is the texture
contour length. What is added by the feedforward–feedback
interactions is further selectivity for the texture surface area
enclosed by the contour. Hence the bar and square/cross are
distinguished by the feedforward sweep, while the cross and
square (which have equal circumference lengths, but different
surface areas) are only distinguished after feedforward–feed-
back interactions. These interactions allow the lowest levels of
the model to represent spatial detail that was not detected in a
feedforward manner and to subsequently transmit this infor-
mation tohigher levels in themodel.Our results thusprovidean
existence proof of the feasibility of recent theoretical models
(Hochstein and Ahissar, 2002; Lee et al., 1998; Roelfsema et al.,
2000) by showing that further selectivity can emerge by means
of feedforward–feedback interactions.

We hypothesize that similar mechanisms are at play
between lower and higher visual cortical areas during texture
segregation, improving selectivity of cortical higher-level neu-
rons to texture-definedshapes. Inourmodel,TEneuronsarenot
as selective for texture-defined shapes as has been found by
Sary et al. (1993). They found that TE neurons responded in an
almost all-or-nothing fashion to shapes like stars, crosses,
circles, etc. We would probably need to introduce further
selectivity of the feedforward and feedback connections to
achieve a similar result. Although it is not known whether this
selectivity to texture-defined shapes arises early or late in the
responses of TE neurons (Sary et al., 1993; R. Vogels, personal
communication), we believe that the feedforward–feedback
interactions described here play a principal role in shaping the
selectivity of high-level neurons. In face-selective neurons, for
example, dynamic changes in tuning properties have been
observed that resemble those reported here. Selectivity evolved
from ‘face versus non-face’ towards selectivity for the faces of
different individuals (Sugase et al., 1999), i.e., neurons conveyed
coarse information in the initial part of their response andmore
detailed information later. We conjecture that these changes
may also result from top–down interactions with early visual
areas for the processing of spatial detail. Our results provide
formal proof that such a mechanism is a theoretical possibility.

We used only relatively simple stimuli in our simulations
and did not include units tuned to more complex stimulus
features in the model. While complex stimulus representa-
tions (e.g., faces in inferotemporal cortex) and more basic
representations in primary visual cortex are well studied
phenomena, cortical feature representations of intermediate
complexity and the input they provide to higher-level neurons
are less well understood. Thus, to robustly handle more
complex tuning, themodelwould have to be adjusted by adding
connectionsandunits that are relativelyunconstrainedbecause
little is currently known about their selectivity, and little is
knownabout the input theyprovide tohigher-level neurons.We
deliberately did not include these connections that would add
many free parameters and that would distract from the simple
idea proposed here: that representations of object contour and
object area appear in lower-level visual areas due to neuronal
interactions and that these representations are conveyed to
higher-level areas using feedforward–feedback interactions.
The model therefore uses simple and transparent mechanisms
to compute contours and figural regions and uses the same set
of parameters repeated across multiple levels to keep their
numberataminimum.Despite a lownumberofparameters, the
model is able to capture data from widely different sources:
model responses reflect object contour and subsequently object
area as in primary visual cortex (Lamme, 1995; Lamme et al.,
1999, see also Roelfsema et al., 2002) and capture dynamic
changes in tuning properties as in inferotemporal cortex
(Sugase et al., 1999), while still able to capture the main
psychophysical observations on perceptual crowding (He et al.,
1996; Parkes et al., 2001).

It is not our intention to argue that spatial detail is never
detected in a feedforward manner; indeed, purely feedfor-
ward computational models of visual processing (e.g.,
Riesenhuber and Poggio, 1999; Wallis and Rolls, 1997) are
able to distinguish between learned stimuli that differ in
small aspects, and results from neurophysiology and psy-
chophysics similarly suggest that some stimulus aspects can
be detected by higher-level areas in a feedforward fashion
(e.g., Oram and Perret, 1992; Thorpe et al., 1996). We rather
suggest recurrent interactions to be beneficial whenever
detail is not being detected by higher level areas during the
initial feedforward sweep. This could happen, for instance,
when novel stimuli are presented to which higher-level
receptive fields are not yet tuned, or when stimuli are
presented in a visually cluttered environment and need to be
segregated from the background.

In the recurrentmodel, theTEneurondifferentiates between
the bar and the square/cross initially and then between the
square and the cross/bar, so that the temporal activity profile as
a whole differentiates between the objects. One way in which
the system could discriminate between the three objects at any
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given moment in time might be integrating the responses over
time (Fig. S1).Neural integratorshavebeen found inparietal and
prefrontal cortex in a number of studies (e.g., Britten et al., 1992;
Roitman and Shadlen, 2002). An alternative might be that
information is conveyed in the temporal pattern of activity (e.g.,
Singer, 1999; VanRullen et al., 2005).

Adaptive Resonance Theory (Carpenter and Grossberg,
1987) also uses feedback to enhance low-level activity
consistent with the global percept. However, ART, the
interactive activation model (McClelland and Rumelhart,
1981) and related models (e.g., Fukushima, 1988) propose a
matching process between higher and lower areas that
verifies if expected information is really there. In contrast,
wesuggest that feedback interactionsbetweenhigher and lower
visual areassignal spatialdetail thatwasnotprovided in the fast
feedforward sweep. Tsotsos et al. (1995) propose a model using
mechanisms similar to the ones presented here, i.e., initial
detection of the globally most salient stimulus representation
via feedforward connections and subsequent localization of
these representations in lower levels using feedback. This
model proposesmechanisms for attentional selection, whereas
our model focuses on cortical mechanisms to transmit infor-
mation that was not conveyed to higher levels initially.

3.2. Crowding

If feedback interactions process spatial detail, what happens
under crowding conditions where spatial detail is lost? We
sought to answer this question by testing our recurrent
model on crowding. The model captures the main psycho-
physical observations on crowding. In actual experiments,
observers are unable to report about individual items under
crowding conditions (Bouma, 1970; Parkes et al., 2001; Toet
and Levi, 1992). Similarly, detailed information about a
texture-defined shape is unavailable in the simulated
temporal response profile of higher-level neurons when
other shapes are presented near it. In addition, our results
parallel findings that demonstrate that even though indi-
vidual stimuli in a crowded area are blocked from a report,
global features of the segregated stimulus set as a whole do
get through to higher areas (Parkes et al., 2001). Furthermore,
the V1 signal is left intact, which is consistent with a
demonstration of orientation-specific adaptation to a
crowded stimulus (He et al., 1996).

Surprisingly, the model V1 surface representations are
enhanced in crowding, implying that feedback interactions are
not hampered under crowding conditions. Instead, the repre-
sentations all fall within the top–down feedback ‘window’ of a
single unit in higher areas and can therefore not be selected
(enhanced) individually. Thus, although the spatial detail of the
individual objects is available at the level of V1, this enhanced
activity cannot be conveyed for each object individually to the
TE neurons providing the feedback, leaving the latter blind to
this detail (while the signal would come through for isolated
objects, see e.g., Fig. 4). Rather, theV1 representationswithin the
feedback window are grouped, making the global properties of
the segregated stimulus set as awhole available in the response
of the higher-level neurons. This explanation is reminiscent of
the one proposed by He et al. (1996), who suggested that the
limited spatial resolution of attention would be responsible for
the crowding phenomenon, i.e., the attentional window would
not be small enough to select just one target. Our simulations
support this explanation,whenattention isviewedas relyingon
feedback mechanisms.

The stimuli used in the He et al. (1996) and Parkes et al.
(2001) experiments differ from the ones used here. In the He
et al. (1996) and Parkes et al. (2001) experiments, the
orientation of the crowded stimulus differed slightly in
orientation from surrounding stimuli, while our model is
selective to two orientations of orthogonal orientation. To fully
account for their results, the model would have to bemodified
by including neurons tuned tomore orientations. We prefer to
use a simpler model with a smaller number of parameters. A
small numbers of parameter values are relatively easy to
constrain using experimental data, while the number of free
parameters associated withmore complexmodelsmight arise
the suspicion of tinkering until higher-level responses showed
the wished-for dynamics and the model fit the crowding data.
In the model, perceptual crowding results when stimulus
representations all fall within the top–down feedback window
of a single higher-level unit, resulting in an inability to select
representations individually. We hypothesize that similar
mechanisms are at play in cortical visual neurons when
presented with a crowded display of shapes. Cortical higher-
level neurons have broader orientation tuning, and individual
V1 representations of slightlydifferent orientation could all fall
within the feedback window of a higher-level neuron. Indeed,
results from neurophysiology show that the structure of feed-
back connections matches the structure of the higher-level
receptive field (Murphy et al., 1999; Wang et al., 2006). Our
model shows that such feedback mechanisms are a possible
explanation for crowding phenomena.

In conclusion, recurrent interactions between higher and
lower visual areas allow high-level neurons in the present
model to express different modes of information in their
firing patterns. Given the extensive neural architecture for
recurrency (Salin and Bullier, 1995), it is likely that recurrent
interactions serve many computational functions, of which
processing of spatial detail is but an example.
4. Experimental procedure

4.1. Model architecture

The model (Fig. 2) is composed of five areas, each of which is
subdivided into feedforward and feedback layers. The first
area (model V1) contains 64 × 64 units tuned to a left-tilted
orientation and the same number of units tuned to a right-
tilted orientation. Units are selective to orientation, but the
neuronal mechanisms leading to orientation selectivity are
not modeled explicitly (see Olshausen and Field, 1996; Rao
and Ballard, 1999; Somers et al., 1995 for models of
orientation selectivity). At each higher level in the model,
the number of units decreases (by a factor four, Burt and
Adelson, 1983), and the size of the receptive fields increases.
The image is thus represented at a coarser resolution in
each successive area of the hierarchy. The receptive fields of
neighboring neurons overlap by 30% in all areas higher than
V1.
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4.2. Connections and weights

Each unit in layer L of the feedforward pathway receives
input from 9 units in the L−1 layer that have the same
feature selectivity (connection type 1 in Fig. 2 with weight
w1). The strength of the feedforward connections depends
on the distance between the receptive field centers d(i, j)
according to an approximate Gaussian distribution and is
normalized with the sum of the 9 values (σU =0.85 interunit
distance; chosen such that the total output weight is equal
for each unit in layer L−1). In model area V1, however, each
neuron is stimulated by a single input unit of similar
feature preference A with activity ai, InpFFV1,jA =ai. Input
units use two feature preferences, left-tilted and right-
tilted. The activity of the left-tilted input units is obtained
by setting all input units overlaying left-tilted image
elements to 1 and all other input units to 0, and similar
for the right-tilted input units. A further source of input
comes from the corresponding unit in the feedback layer
(connection type 2 with weight w2), which modulates
feedforward activity (Fukushima, 1988; Grossberg, 1999;
Roelfsema et al., 2002). Each unit receives inhibition from
24 neighboring units with similar feature selectivity and via
1 inhibitory self-connection (connection type 3 with weight
w3) (Grossberg and Mingolla, 1985; Li, 1999; Malik and
Perona, 1990; Stemmler et al., 1995). The strength of the
inhibitory connections depends on the distance between the
receptive field centers d(i, k) according to a Gaussian
distribution and is normalized with the sum of the 25 values
(σV=0.9 interunit distance).

Each unit in the feedback pathway has a corresponding
unit in the feedforward pathway from which it receives
excitatory input (connection type 4 with weight w4).
Furthermore, it receives excitatory feedback input from
units with similar feature selectivity in the next higher
area (connection type 5 with weight w5) and inhibitory
feedback input from units with the opposite feature
selectivity in the next higher area (connection type 6 with
weight w6) (Chey et al., 1997; Finkel and Edelman, 1989;
Hahnloser et al., 1999).

Connection weights wi for connection types i were as
follows: w1=2, w2=3, w3=3, w4=1, w5=3, w6=8. We performed
a systematic exploration of the model's weight parameters
that enabled us to draw a bifurcation diagram (Fig. S2; Szabo et
al., 2004). The connection weights above come from a regime
of operation of the network that is characterized by a correct
behavior of model V1 cells (i.e., as real V1 neurons: early
enhanced response to boundaries and subsequent enhance-
ment of the figural region, Lamme, 1995; Lee et al., 1998).
Parameter values were not very critical for the results and
were kept constant throughout all simulations. Note that
dynamic tuning of higher-level responses and crowding
phenomena always follow when contour and figural areas
are detected in model V1 (Fig. S2).

4.3. Activity and updating

The activity of the network units is described by continuous
variables that would represent the mean activity of a group or
pool of functionally similar neurons in physiology. Activity in
the feedforward pathway is updated according to the follow-
ing equations:
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Where FFL,iA stands for the activity of pool i with feature
selectivityA in the feedforward layer of area L, U is a neighbor-
hood of 9 pools in the L−1 layer that have the same feature
selectivity, V is a neighborhood of 25 pools in layer L that
have the same feature selectivity, FBL,i

A stands for the activity of
pool iwith the same feature selectivity in the feedback layer of
area L, AFL,iA stands for a local inhibitory process of pool i with
feature selectivity A in the feedforward layer of area L, and f is
a squashing function:

f hs ðxÞ ¼ 0:5ð1þ tanhÞðsðx� hÞÞ ð3Þ

The slope of the initial response transient is determined by
τ1, a time constant that was set to 10. After this transient
response, the activity of the neurons is reduced by a local
inhibitory process, AFL,iA , with time constant τ2 = 100. This
process was included to model the transient responses of
visual cortical neurons (e.g., Maunsell and Gibson, 1992). To
model the transient input coming from neurons in the LGN
and retina, the input I to V1 neurons is reduced by such a local
inhibitory process AIiA as well:
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where τ3 = 200, chosen such that the model's input layer
simulates the decaying responses of LGN and retina, but the
model's behavior is not very critical to its value. Activity in
the feedback pathway is updated according to the following
equations:
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where Wi is a neighborhood of units in the L+1 layer that
receive input from unit i in the feedforward layer of area L
(hence, feedforward and feedback connections are reciprocal),
Yi is a neighborhood in layer L+1 that is as large as Wi but
contains units with the opposite feature selectivity A′, and Zm

is a neighborhood in layer L+1 that contains 25 units with the
opposite feature selectivity A′. The time constant of the
feedback pathway (τ4=50) is larger than that of the feedfor-
ward pathway, σW=σY=0.85, and σZ=0.9 interunit distance.
Also, a local inhibitory process ABL,i

A was included tomodel the
transient responses of visual cortical neurons.

The model was updated synchronously. The equations
were solved using Euler's method. An adequate fit to the
experimental V1 data was obtained if each time step of the
model was set to 1.25ms. To avoid boundary effects, all values
outside the bounds of the layers were computed by assuming
that the layer is periodic. In the figures, 40mswas added to the
data points to account for the delays before area V1 (Nowak
et al., 1995) as the retina and the LGNwere not included in the
model.
Appendix A. Supplementary data

Supplementary data associated with this article can be found,
in the online version, at doi:10.1016/j.brainres.2007.03.090.
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