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Abstract In this paper, we demonstrate that two character-
istic properties of mammalian brains emerge when
scaling-up modular, cortical structures. Firstly, the glia-to-
neuron ratio is not constant across brains of different sizes:
large mammalian brains have more glia per neuron than
smaller brains. Our analyses suggest that if one assumes that
glia number is proportional to wiring, a particular quantitative
relationship emerges between brain size and glia-to-neuron
ratio that fits the empirical data. Secondly, many authors have
reported that the number of neurons underlying one mm2

of mammalian cortex is remarkably constant, across both
areas and species. Here, we will show that such a constancy
emerges when enlarging modular, cortical brain structures.
Our analyses thus corroborate recent studies on the mam-
malian brain as a scalable architecture, providing a possible
mechanism to explain some of the principles, constancies
and rules that hold across brains of different size.

Keywords Comparative neuroanatomy · Glia-to-neuron
index · Neuron number

1 Introduction

Brains function by virtue of their connectivity. In contrast
with human mass communication networks, point-to-point
communications between nerve cells cannot use shared lines.
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Instead, a physical structure must be present for each connec-
tion. Imagine that each phone were connected with a separate
wire to each of a thousand other phones. Whereas this might
be a feasible design for a small town, in a country as large as
America the landscape would be dominated by huge, thick
cable structures, easily overwhelming the highway system in
size. Similarly, large brains face a severe connectivity prob-
lem. In this paper, we look at the consequences of brain con-
nectivity ‘designs’ that have been successful in the evolution
of large-brained animals, in particular of mammals.

In an earlier analysis (Murre and Sturdy 1995), we calcu-
lated the volume of connective structures given the number of
neurons, their connective graph, and selected packing strat-
egy. A surprising finding was that for brain structures consist-
ing of many densely connected neurons, it is most efficient to
place the neuron bodies in a cortex with the connecting struc-
tures running underneath. This ‘potato peel’ approach leads
to a smaller wiring volume than the packing strategy whereby
the same number of neurons would be intermingled with the
connecting structures (a ‘spaghetti with meatballs model’).
This was surprising to us because we had expected it to be
the other way around. After all, intermingling seems to offer
opportunities for optimal component placement (Cherniak
1994, 1995).

Another conclusion of this research was that introducing
patchy or modular connectivity, with occasional long-range
connections that have many end-point connections to a patch
or module, was much more efficient than random (but sparse)
connectivity, especially for large brains. The efficiency of
this structure was only surpassed by nearest neighbor con-
nection schemes where neurons connect only to the direct
neighborhood. These latter structures, however, are suitable
only for local processing. For many processing functions,
especially for associative memory, a significant proportion
of long-range connections is required. Other authors have
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come to similar conclusions about the brain’s wiring (e.g.,
Cherniak et al. 1999; Mitchison 1991, 1992; Young 1992).
Mitchison (1991), for instance, showed that dividing one
cortical area into two (as with the stripes and blobs in the cor-
tex) may reduce the volume taken up by their connections,
especially in larger brains. Patchy modularity, thus, may help
to reduce wiring length, particularly in larger brains.

Modularity causes a brain to differentiate without neces-
sarily limiting it to mainly local processing. Such differentia-
tion may have many functional advantages, leading to better
learning and generalization capacity (Murre 1992). Com-
puter simulations of neural networks that were evaluated on
their capacity to carry out a simple visual recognition task
also tended to evolve neural network architectures with dif-
ferent streams (Happel and Murre 1994), even if no penalties
for wiring length were given. Indeed, recent detailed neural
networks of the visual system show a high degree of regu-
larity in wiring based on patchy modular connectivity (e.g.,
Deco and Rolls 2002; Li 1999; Roelfsema et al. 2002).

On the basis of these findings, we might conjecture that
patchy modular brains with a cortical structure are more
expandable in evolution compared to brains that are less dif-
ferentiated. Patchy modularity and other limitations on con-
nectivity often tend to enhance processing efficiency,
provided they do not limit the brain to local processing only
(Murre 1992). A cortical, modular structure could thus at
the same time expand in size and processing efficiency. The
mammalian brain in particular fits these characteristics, caus-
ing it to be “eminently scalable” (Striedter 2005, p. 284).
Indeed, recent neuroanatomical analyses hint to the scalabil-
ity of mammalian brains (Clark et al. 2001).

Mammalian brains have (patchy) modular connectivity
and cortices. On the basis of these considerations, we expect
them to be at the same time expandable and powerful, capable
of complex adaptive processing tasks. In this paper, we use
the same theoretical framework as Murre and Sturdy (1995)
and demonstrate that two characteristic properties of mam-
malian brains emerge when scaling up brain structures of that
size: (1) The glial index, the quotient of the number of glia
and neurons per unit volume, is not constant across different
brains. Large brains have more glia per neuron (Friede 1954;
Hawkins and Olszewski 1957; Tower and Young 1973). Our
analyses suggest that if one assumes that glia number is
proportional to wiring length (resulting in a constant glia
density, Tower 1967), a particular quantitative relationship
emerges between mammalian brain size and glia-to-neuron
ratio that fits the empirical data well. (2) Many authors have
reported that the number of neurons underneath a mm2 of
mammalian cortex is remarkably constant, across both spe-
cies and areas (e.g., Rockel et al. 1980, see also Bok 1959;
Beaulieu and Colonnier 1985; Braitenberg and Schüz 1991;
Hendry et al. 1987; Shankle et al. 1998). In this paper, we
will confirm this constancy using neuroanatomical data from

across the literature, and show that when scaling-up modular,
cortical brain structures, as an emergent (theoretical) prop-
erty we predict exactly such a constancy. Our analyses thus
corroborate recent studies in suggesting a scalable architec-
ture in the mammalian brain, proposing a mechanism to
explain constancies or rules that hold across mammalian
brains of different size.

2 Model

2.1 Glia volume in a cortical modular structure

We do not intend to model brain anatomy in full detail. The
model should rather be seen as a first step toward a better
understanding of some general principles underlying brain
design, deliberately ignoring some structures while taking
hints from highly simplified ones. Our model uses the main
principles and assumptions described in Murre and Sturdy
(1995). We assume that the entire volume of the brain is
given by the sum of the volumes of all wiring (all cell pro-
cesses, including dendrites and axons, see also Braitenberg
2001; Murre and Sturdy 1995) and the volume of glia. We
also assume that the fiber’s cross-sectional area, or radius r ,
remains constant (Braitenberg 2001; Mitchison 1992). We
use a structure in which neurons are positioned equidistantly
in two dimensions on the surface of a sphere, with connect-
ing structures running through its internal volume (Murre and
Sturdy 1995). This structure approximates to the gray matter
of the brain (cortex, neurons), with white matter (connec-
tions) filling the interior (albeit we do not model gray matter
volume explicitly, see also Sect. 3.1). For larger, convoluted
brains, convolutions are modeled as occurring entirely in the
gray matter and the surface of the white matter is modeled
as the surface of the sphere. Further, we consider a modular
connectivity design, in which the network is subdivided into
many modules. Within a module, connectivity may be dense.
Connectivity is much sparser at the module-level, where any
given neuron is connected to only a subset of the available
modules. There is considerable consensus that this connec-
tivity pattern is the most plausible for the mammalian brain
(see e.g., Mountcastle 1978; Szentágothai 1975 or Ruppin
et al. 1993; Wen and Chklovskii 2005; for similar connectiv-
ity schemes).

We use a snaking fiber structure (Fig. 1, see also Murre
and Sturdy 1995), in which a neurons ‘snakes’ along all its
targets, like for instance, the parallel fibers in the cerebellum
which snake along purkinje cells. Neurons often show elab-
orate arborization, but arborization in itself does not reduce
total fiber length. Specifically, with neurons placed in a rect-
angular grid and bifurcations coinciding with neurons, any
branching structure can be replaced by a snaking structure
that has the same total fiber length (Murre and Sturdy 1995).
Compared to the branching neuron, derivations based upon
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a) b)

Fig. 1 Two connection strategies. A pre-synaptic neuron connects to
b post-synaptic targets (white circles). a A snaking connection strategy.
b A branching connection strategy. Total fiber length is equal in a and
b. Longest path-length in a scales O(b), longest path-length in b is
O(b1/2)

a snaking model are more straightforward, which is why we
will use them here.

Following Tower (1967), we assume that the density of
glia is constant, regardless of neuron number or fiber length.
This is similar to adding a glia volume that is proportionate
to the length of the fibers, so that the total system becomes
one of naked fibers with increased thickness only. Its total
cross-sectional area sag can be decomposed as follows:

sag = sa + sg, (1)

where sa is the cross-sectional surface taken up by the neu-
ron’s processes (dendrites and axons), and sg is the cross-
sectional surface taken up by glia.

We assume that any given pre-synaptic neuron n is only
connected to a subset m of the available modules; thus the
total number of modules in the volume may, but need not,
exceed m. Also, target modules need not be the same for every
pre-synaptic neuron. In a modular structure, wiring volume
can be decomposed into global fiber volume Ag, which con-
sists of long-range connections to the target modules, and
local fiber volume Al , which consists of short-range branches
within the target modules. We will derive global fiber vol-
ume first. Let us assume for simplicity that the target mod-
ules are distributed regularly throughout the cortical sheet
(see also Murre and Sturdy 1995). If the modules are spread
regularly, they will be spaced nearly equidistantly. With m
target modules distributed regularly throughout the cortical
sheet, on average n/m neurons lie in between two targets,
and axon length in between targets is l = (n/m)1/2 neurons.
With interneuron distance x , 1 l is (n/m)1/2x meters. All

1 Technically, interneuron distance x reflects the projected interneuron
distance on the white matter surface, rather than the true interneuron
distance on the cortical sheet. This becomes apparent when we derive an
explicit expression for x in Eq. (4), where white matter surface (rather
than gray matter surface) scales as the 2/3 power of connectivity volume.
For non-convoluted brains, the projected interneuron distance equals the
true interneuron distance on the cortical sheet. Note that, had we instead
used distance on a flattened cortical surface together with the empirical
scaling law surface∼volume8/9 for convoluted brains (Hofman 1985,
1989; Prothero 1997), we would have arrived at an incorrect expres-
sion for the volume of the convoluted brain, namely one that consisted
of a flattened cortex with loosely packed and/or too long connections

n neurons send a fiber to m modules, so that the total fiber
volume for the long-range connections Ag is:

Ag = nm(n/m)1/2xsag. (2)

We assume that within a target module a neuron connects
to b post-synaptic neurons lying in the neighborhood of its
long-range fiber. With distance x in between every two neu-
rons, local branching volume in one target module will be
bxsag. With m target modules this becomes mbxsag. Each
of n pre-synaptic neurons makes local connections within
target modules, so total fiber volume within target modules
Al is nmbxsag. Note that this equation allows for different
numbers of local targets across modules, as well as targets
within the pre-synaptic module, as long as the total number
of local connections mb remains the same.

Combining local and global connection volume gives the
following expression for V = Ag + Al :

V = nm(n/m)1/2xsag + nmbxsag

= sagx(n3/2m1/2 + nmb) = 4
3π R3. (3)

The surface of this spherical connectivity volume V is occu-
pied by n neurons that are located equidistantly, so that each
of the neurons occupies a small square of 4π R2/n on the
white matter surface. By taking the square root of this, we
obtain an expression for x :

x = 2π1/2n−1/2 R. (4)

Substituting the derived value for x in Eq. (3) gives an expres-
sion for R, and results in a volume of:

V = Cn3/2(m1/2 + n−1/2mb)3/2, (5)

where C is a constant:

C = 4
3

( 3
2

)3/2
π7/4r3

ag. (6)

The expression for glia volume proper is the same, except
for the constant (cf. Eq. 1):

C = 4
3

( 3
2

)3/2
π7/4r3

g . (7)

For large n, glia volume scales as O(n3/2). As glia cells
are not markedly larger in larger species (Friede 1963), this
implies that the glia-to-neuron ratio is larger in bigger brains.

Footnote 1 continued
running underneath. While Eq. (4) is valid for the derivation of white
matter volume in convoluted brains, it results in an underestimation of
gray matter volume, for which a derivation using the true interneuron
distance on the cortical sheet would have been more correct. However,
we expect the effect to be small because local connections (which are
arguably dominant in gray matter, see Sect. 3) have a negligible effect
on total volume.
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2.2 Surface area of a cortical modular structure

Let us now see what happens to the surface of this modular,
cortical structure when we enlarge its volume. The model
does not explicitly distinguish between gray and white
matter volume, but it still allows for a derivation of the
relation neuron number∼gray matter surface area. We will
first consider the gray matter surface of small, non-convo-
luted brains for which gray matter∼brain volume2/3 (Hof-
man 1985). Let us assume that the number of neurons increases
with factor α. In that case, the sphere’s new, bigger volume is:

Vα = Cα3/2n3/2(m1/2 + α−1/2n−1/2mb)3/2. (8)

Thus, when b is sufficiently small and with large n, the con-
nectivity volume increases with α3/2:

Vα = α3/2V, (9)

where V is the volume with n neurons. The radius R of this
enlarged sphere is:

Rα = (3/4π−1)1/3α1/2V 1/3, (10)

and its cortical surface is:

Areaα = 4πr2
α = 4π(3/4π−1)2/3αV 2/3 = ZαV 2/3. (11)

The radius R of the smaller sphere with n neurons is:

R = (3/4π−1)1/3V 1/3, (12)

with gray matter surface:

Area = 4π R2 = 4π(3/4π−1)2/3V 2/3 = Z V 2/3. (13)

So that the ratio of the two surfaces is:

Areaα/Area = α. (14)

This implies that the surface of a modular, cortical brain
enlarges with factor α if the number of neurons increases
with α. These analyses predict that interneuron distance on
the gray matter surface is identical across both area and brain
size, which implies that the number of neurons underlying
one unit of cortical surface is constant, across both area and
species.

A somewhat different relationship holds for larger, con-
voluted brains. Here, gray matter surface area scales as the
8/9 power of brain volume (Hofman 1985, 1989; Prothero
1997):

Area ∝ V 8/9 (15)

so that

Areaα ∝ (Vα)8/9 = (α3/2V )8/9 = α4/3V 8/9 (16)

Although this analysis does not predict a linear relationship
between neuron number and gray matter surface, it does show
that the cortical surface of the larger, convoluted brain is at
least large enough to accommodate the newly added neurons.

3 Results

3.1 Glia-to-neuron index

Our analyses have quantified a relationship between the num-
ber of glia and neurons, which we can compare to real neuro-
anatomical data. In order to do this, we assume a constant glia
density (Tower 1967) of 45% glia per unit volume (Cherniak
1990), which is similar to setting glia cross-sectional area at
45% of the total cross-sectional area. As a first approxima-
tion, we assume that glia density is the same for global and
local connections. Later, we will show what happens when
glia density is different for the two. Using different numbers
of neurons, we arrive at the total volume taken up by glia cells
for brains of different sizes. Dividing by single cell volume
gives total glia number, from which the glia-to-neuron index
can be derived. We use m = 8 target modules, b = 1,250
within-module connections, and r = 0.1 µm (Murre and
Sturdy 1995). This estimate of m is likely at the high end
of the range. However, the glia-to-neuron relationship sug-
gested by the model does not depend highly on the precise
value of m, and we merely choose to illustrate one value here.
The value of b results after dividing a total of 10,000 con-
nections (Arbib 1972; Carpenter 1984; Palm 1982) over the
8 target modules.

The results of our exploration are presented in Fig. 2 (solid
line). The fit between the empirical index and the index as
predicted by the model is encouraging, explaining with the
model 89% of the variance in the data. Unfortunately, we
could not find empirical data differentiating between the
types of glia cells, preventing us from drawing any conclu-
sions on the relation between a particular kind of glia cell and
neuron number. For illustrational purposes, we also plotted
the glia-to-neuron index using a smaller value of m(m = 4),
and, consequently, higher b(b = 2, 500) (dashed line). Note
that the model does not depend highly on the value of its
parameters: glia volume scales as the 3/2 power of the num-
ber of neurons (i.e., g ∼ n3/2, see Sect. 2.1), automatically
resulting in more glia per neuron for larger brains, as has been
found experimentally (Friede 1954; Hawkins and Olszewski
1957; Tower and Young 1973). In a similar vein, changing,
for example, the fraction of glia cells per unit volume does
not qualitatively change our results, provided it is constant
across brain size. Such a constant percentage of glial cells
per unit volume has been observed in neuroanatomy (Tower
1967; Cherniak 1990).

A potential concern may be that we have generalized glia
density across gray and white matter. Glia density could be
different for the two, and this could affect the derived glia-to-
neuron ratio, as the fraction of white matter is not constant
across brains of different size. Our model does not differ-
entiate explicitly between gray and white matter. One could
argue, however, that the model’s global connections mostly
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Fig. 2 The empirical glia-to-neuron index (triangles) and the index
with the modular topology in a cortical model (solid, dotted,
dash-dotted and dashed lines). Index data from Friede (1954) and
Hawkins and Olszewski (1957). Neuron number for the mouse is from
Braitenberg and Schüz (1991), and human cortical neuron number is
from Pakkenberg and Gundersen (1997). All other neuron numbers were
derived by multiplying cortical surface area (Blinkov and Glezer 1968;
Mayhew et al. 1990; Nieuwenhuys et al. 1998) with 90,000 neurons/
mm2 (Average of Fig. 3). We used cortical surface area of the ox as
an approximation of the surface area of the cow. Surface area of the
whale is a mean of three whale cortices. Solid line: m = 8, b = 1,250,
dashed, dotted and dash-dotted line: m = 4, b = 2,500. Dashed and
solid line: glia density is 45% per unit volume for both local and global
connections, dotted line: glia density is 50% per unit volume for global
connections, and 45% for local connections, dash-dotted line: glia den-
sity is 40% per unit volume for global connections, and 45% per unit
volume for local connections. In all cases r2 = 0.89

determine white matter volume, while the model’s local con-
nections would dominate in gray matter. Thus, to further
refine the model’s predictions, we also use different glia den-
sities for global and local connections. We could not find any
specifications regarding glia density in white matter in the
literature and chose to illustrate several densities in Fig. 2
(dotted line: 50% glia per unit white matter volume, dash-
dotted line: 40% glia per unit white matter volume, both lines:
45% glia per unit gray matter volume). Changing the percent-
age glia for local connections has a negligible effect on the
glia-to-neuron ratio and is not illustrated here. Notice that for
different glia densities, the model’s prediction approximates
the empirical data rather well (Fig. 2).

3.2 A constant neuron number underlying 1 mm2 cortical
surface

A second prediction of our model is that the interneuron
distance across cortical modular brains of different sizes
should be constant, at least for non-convoluted brains. Many
authors have reported on such a constancy across different
species (e.g., Rockel et al. 1980, see also Bok 1959; Beaulieu
and Colonnier 1985; Braitenberg and Schüz 1991; Hendry
et al. 1987; Shankle et al. 1998), though others have come to
different conclusions (Beaulieu and Colonnier 1989; Haug
1987; Skoglund et al. 1996). Figure 3 summarizes neuronal

Fig. 3 Neuron number in the gray matter of cortex underlying one
square millimeter across species and areas. Shown are all data known
to us (across authors, areas and species). Triangles are data from the
human, circles are from the mouse. For comparison: the total number
of cortical neurons in the mouse is approximately 16 million neurons
(Braitenberg and Schüz 1991), whereas the total number of cortical
neurons in the human is around 21 billion (Pakkenberg and Gundersen
1997): a 1,000-fold difference. Data from Beaulieu (1993), Beaulieu
and Colonnier (1985), Beaulieu and Colonnier (1989), Braitenberg and
Schüz (1991), Finlay and Slattery (1983), Haug (1987), Hendry et al.
(1987), Rockel et al. (1980), Shankle et al. (1998), Skoglund et al.
(1996), Stolzenburg et al. (1989)

numbers underneath a unit volume of pial surface across dif-
ferent species and areas as reported in the literature.2 The
counting techniques used in different studies diverge widely,
and it is therefore difficult to directly compare results across
studies. Nonetheless, although absolute brain volume may
vary a factor thousand with each other (e.g., the total number
of cortical neurons in the mouse is approximately 16 mil-
lion neurons, whereas the total number of cortical neurons
in the human is around 21 billion, Braitenberg and Schüz
1991; Pakkenberg and Gundersen 1997), there appears to be
much less variation in the number of neurons underlying one
squared millimeter of cortical surface. Our prediction thus
appears to be supported by the empirical data.

4 Discussion

Simplified and unrealistic as these derivations may be, they
do produce some predictions that come strikingly close to
empirical values. We predicted (albeit in hindsight) that

2 Area 17 has a highly laminar structure in primates, with the stria gen-
narii representing a layer of white matter within the gray matter of the
area (e.g., Mitchison 1992). The make-up of this area appears to have
followed a different evolutionary principle (see Discussion), which is
why we have excluded this area from our analyses.
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mammalian brains would have a constant number of neurons
underneath a unit of pial surface and across a large range of
sizes, and we predicted a certain relationship between brain
size and glia-to-neuron ratio. These characteristics arose
when scaling-up modular, cortical brains. For both predic-
tions there is considerable evidence. A bold conclusion from
our theoretical exercise might be that the mammalian neo-
cortex was able to expand greatly in evolution because it was
modular and had a cortical structure. Patchy modularity and
other limitations on connectivity often tend to improve pro-
cessing efficiency, provided they do not constrain the brain
to local processing only. Mammalian neocortex could thus
at the same time enlarge its size and its processing efficiency
(Striedter 2005).

There is mounting consensus that as smaller brains evolve
into larger ones, new structures may emerge as duplications
of existing structures, without essential changes in tissue
(Kaas 1982, 2005; Rakic 1995). Our analyses show that such
newly emerged structures can easily be accommodated on
the surface of the bigger brain. Alternatively, new structures
may have emerged as differentiated parts of old structures.
For example, a layered brain part may have evolved from
a brain without layers (Kaas 2005). Primate primary visual
cortex may reflect such a rule, with the stria gennarii rep-
resenting a layer of white matter within the gray matter of
the area (e.g., Mitchison 1992). Indeed, this area has twice
the number of neurons underneath a squared millimeter of
surface than the rest of the cortex (Rockel et al. 1980).

Many reasons for the remarkable constancy underlying
one unit of cortical surface may be adduced. For example, one
might posit a ‘window constraint’, arguing that each neuron’s
connecting structures need access to the white matter and that
the window between white and gray matter has room for only
a limited number of connecting ‘wires’. New neurons piled
above such a window will be starved for external connections
and can therefore have only local processing functions. The
need for such neurons will be limited, which is why there
would be a theoretical upper-limit on the number of neurons
underneath a unit volume of pial surface (Murre and Sturdy
1995). Though such explanations have their merit, the con-
stancy also emerges from scaling-up modular, cortical brain
structures. Some words of caution seem merited here: firstly,
rather than a causal relationship between connectivity vol-
ume and the number of neurons underlying one squared mil-
limeter of cortical surface, our model shows that the surface
of an enlarged sphere is large enough to accommodate the
newly added neurons, without essential changes in the struc-
ture of neural tissue. This is consistent with the idea that
new structures emerge as duplications of existing structures,
but does not rule out alternative explanations (e.g., Murre and
Sturdy 1995). For example, it is conceivable that several pro-
cesses took place during evolution: optimization of the num-
ber of wires to the white matter (the original Murre and Sturdy

(1995) explanation), together with a duplication of existing
(optimal) structures (as suggested here). Secondly, biology
dictates that gray matter surface area scales as the 8/9 power
of brain volume in larger (convoluted) brains (Hofman 1985,
1989; Prothero 1997), which is, according to our model,
larger than necessary to accommodate the newly added neu-
rons. It would be interesting to see whether different restric-
tions on connectivity and/or tissue or functional constraints
could resolve this discrepancy for convoluted brains.

Many explanations for a higher glia-to-neuron index in
larger brains have been proposed. Friede (1954), for instance,
related the index to qualitative parameters on the phyloge-
netic stage of animals, while Hawkins and Olszewski (1957)
concluded that not phylogenetic stage but size of the brain is
the main determinant of the glial index. The glia-to-neuron
ratio has also been correlated with the length of axons, as
longer axons would need more glia for their support (Friede
1963; Friede and Van Houten 1962). Our analyses corrob-
orate the latter conclusion. Because glia add a volume pro-
portionate to the length of axons (see Sect. 2.1), the higher
glia-to-neuron ratio in larger brains is mainly due to the fact
that axons are longer in larger brains.

Previous studies have related the brain’s design to a min-
imization of conduction delays (Wen and Chklovskii 2005),
provided scaling laws (Changizi and Shimojo 2005; Karbow-
ski 2003) and related these to connectivity (Changizi 2001;
Braitenberg 2001), or have shown that modular connectivity
(Mitchison 1991; Murre and Sturdy 1995) and a segregation
in white and gray matter (Murre and Sturdy 1995, Ruppin
et al. 1993) results in less wiring. Here we have extended
these studies by taking into account glia volume and by show-
ing that expanding modular, cortical structures results in a
larger glia-to-neuron ratio in larger brains, as well as a con-
stant neuron number underlying 1 mm2 of cortical surface
across brain size. For both predictions exists considerable
evidence (e.g., Braitenberg and Schüz 1991; Friede 1954;
Rockel et al. 1980; Tower and Young 1973).

We conclude that modular, cortical brains form a scal-
able architecture (Clark et al. 2001). A larger glia-to-neuron
index in larger brains (e.g., Friede 1954) and a constant neu-
ron number underlying 1 mm2 of pial surface (e.g. Rockel
et al. 1980) simply arise when scaling-up the mammalian
brain.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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