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Modeling correlated noise is necessary to decode uncertainty
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A B S T R A C T

Brain decoding algorithms form an important part of the arsenal of analysis tools available to neuroscientists, allowing for a more detailed study of the kind of in-
formation represented in patterns of cortical activity. While most current decoding algorithms focus on estimating a single, most likely stimulus from the pattern of
noisy fMRI responses, the presence of noise causes this estimate to be uncertain. This uncertainty in stimulus estimates is a potentially highly relevant aspect of cortical
stimulus processing, and features prominently in Bayesian or probabilistic models of neural coding. Here, we focus on sensory uncertainty and how best to extract this
information with fMRI. We first demonstrate in simulations that decoding algorithms that take into account correlated noise between fMRI voxels better recover the
amount of uncertainty (quantified as the width of a probability distribution over possible stimuli) associated with the decoded estimate. Furthermore, we show that
not all correlated variability should be treated equally, as modeling tuning-dependent correlations has the greatest impact on decoding performance. Next, we examine
actual noise correlations in human visual cortex, and find that shared variability in areas V1-V3 depends on the tuning properties of fMRI voxels. In line with our
simulations, accounting for this shared noise between similarly tuned voxels produces important benefits in decoding. Our findings underscore the importance of
accurate noise models in fMRI decoding approaches, and suggest a statistically feasible method to incorporate the most relevant forms of shared noise.
1. Introduction

What sensory stimulus evoked this particular pattern of cortical ac-
tivity? This question lies at the heart of brain decoding algorithms. Most
fMRI decoders will estimate or ‘decode’ a single stimulus value that is,
according to some underlying model, most consistent with the observed
data. In truth, however, there is rarely just one stimulus that provides a
plausible explanation. Rather, different stimuli may all be somewhat
consistent with the measured response. The main reason for this impre-
cision is variability (or noise), which causes even the same stimulus to
elicit different activity patterns each time the stimulus is presented. By
the same token, variability allows the same response pattern to be evoked
by a range of different stimuli. From a noisy response pattern, therefore,
the stimulus that elicited the pattern cannot be inferred with perfect
precision. Rather, there is some degree of uncertainty in the predictions,
and this uncertainty may vary from one decoded activity pattern to the
next. Importantly, while uncertainty may stem from imprecise mea-
surements, it can also be of neural origin. Since neural responses them-
selves are inherently noisy (Dean, 1981; Schiller et al., 1976), cortical
activity cannot encode stimulus information with perfect precision, and
this imprecision can, moreover, fluctuate over time. Uncertainty, thus, is
an important feature of cortical stimulus representations, providing a
window on the fidelity of neural stimulus processing from one moment to
the next.
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How can uncertainty be measured from cortical activity patterns?
Mathematically speaking, the presence of uncertainty means that cortical
information is most accurately characterized by a probability distribution
over all possible stimuli. The wider this distribution, the larger is the
range of stimuli that could have evoked the observed pattern of cortical
activity, and hence, the higher is the uncertainty. In order to measure
uncertainty, therefore, we should estimate probability distributions. But
how can this be achieved, and why is this not possible with conventional
decoding algorithms? Recall that uncertainty largely stems from noise in
the data. This noise turns the causal relationship between stimuli and
responses from a deterministic to a stochastic one, described by proba-
bilities rather than fixed outcomes. To estimate probabilities, therefore, a
decoding algorithm should capture this noisy, stochastic relationship.
Mathematical models that describe the causal link between stimuli and
cortical activity are typically known as forward or generative models, and
have become a popular tool to describe (and extract information from)
fMRI activity. Importantly, however, most models to date assume that
noise is simply independent between fMRI voxels (e.g. Kay et al., 2008;
Brouwer and Heeger, 2009; Serences et al., 2009; Jehee et al., 2012; Ester
et al., 2013). Contrary to this assumption, mounting evidence suggests
that variability is instead correlated in cortex (Arcaro et al., 2015; Bair
et al., 2001; de Zwart et al., 2008; Henriksson et al., 2015; Parkes et al.,
2005; Rosenbaum et al., 2016; Smith and Kohn, 2008; Zohary et al.,
1994). It is well known that given incorrect assumptions of
nl (J.F.M. Jehee).
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independence, decoding algorithms may fail to fully characterize the
probability distribution encoded in cortical activity, despite producing
reasonable estimates of the most likely presented stimulus (Domingos
and Pazzani, 1997; Niculescu-Mizil and Caruana, 2005; Zhang, 2004).

Thus, the ability to measure stimulus distributions from cortical ac-
tivity patterns hinges on having an appropriate model of the noise cor-
relations in the data. But since the number of these correlations increases
quadratically with the number of voxels in an fMRI data set, estimating
them individually and without any guiding principles is often statistically
impossible. Here, we propose a simpler approach, based on the notion
that not all shared noise is equally important. Specifically, as others have
argued before (Abbott and Dayan, 1999; Averbeck and Lee, 2006;
Moreno-Bote et al., 2014; Smith and Kohn, 2008), correlated noise is
most detrimental when it is indistinguishable from the stimulus-driven
response. That is, when noise is correlated between similarly-tuned
voxels, their joint activation can either indicate the presence of a mutu-
ally preferred stimulus, or that of shared noise. A decoder ignorant of the
possibility of such correlated noise would tend to conclude that the
voxels were activated by their preferred stimulus. Accordingly, we
reasoned, this “naïve” decoder would incorrectly assign high probabili-
ties to the stimuli preferred by these voxels, without considering in-
terpretations consistent with shared noise.

To quantify these intuitions, we will first demonstrate in simulations
that an accurate characterization of probability distributions is possible
if, specifically, those correlations are accounted for that align with sim-
ilarities in voxel tuning preferences. Correlations that do not have such
tuning-dependent structure, on the other hand, may be safely ignored.
We then examine noise correlations in fMRI measurements from human
visual cortex, and find that these correlations contain the relevant tuning-
related structure. Finally, we show that a decodingmodel that takes these
tuning-dependent noise correlations into account provides an accurate
window onto trial-by-trial fluctuations in the uncertainty in cortical
stimulus representations. These findings exemplify the importance of
incorporating noise correlations in forward models of neuroimaging
data, and suggest a simple, statistically feasible approach to do so.

2. Methods

2.1. Participants

Eighteen healthy adult volunteers (aged 22–31 years, seven female)
participated in this study. All had normal or corrected-to-normal vision,
and provided written and informed consent prior to participating. The
study was approved by the Radboud University Institutional Re-
view Board.

2.2. MRI data acquisition

MRI data were acquired using a Siemens 3T Magnetom Trio scanner
with an eight-channel occipital receiver coil, located at the Donders
Center for Cognitive Neuroimaging. At the start of each session, a high-
resolution T1-weighted magnetization-prepared rapid gradient echo
anatomical scan (MPRAGE, FOV 256 x 256, 1 mm isotropic voxels) was
acquired for each participant. Functional imaging data were collected in
30 slices oriented perpendicular to the calcarine sulcus, covering all of
the occipital and part of posterior parietal and temporal cortex, using a
T2*-weighted gradient-echo echoplanar imaging sequence (TR 2000 ms,
TE 30 ms, flip angle 90�, FOV 64 � 64, slice thickness 2.2 mm, in-plane
resolution 2.2 � 2.2 mm). Data were previously analyzed in the context
of a different study (van Bergen et al., 2015).

2.3. Experimental design & stimuli

Visual stimuli were displayed on a rear-projection screen using a
luminance-calibrated EIKI projector (resolution 1024 � 768 pixels,
refresh rate 60 Hz). Observers viewed the screen through a mirror
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mounted on the head coil. Stimuli were generated using a Macbook Pro
computer running Matlab and the Psychophysics Toolbox (Brainard,
1997; Pelli, 1997).

Throughout each experimental run, participants were required to
maintain fixation at a bull's eye target (radius: 0.25�) that was shown at
the center of the screen. Each run started with an initial fixation period
(4 s), followed by 18 stimulus trials (12 s each, separated by inter-trial
intervals of 4 s) and a final fixation period (4 s). At the start of each
trial, an orientation stimulus was shown, consisting of a counterphasing
sinusoidal grating (duration: 1.5 s, contrast: 10%, spatial frequency: 1
cycle/�, randomized spatial phase, 2 Hz sinusoidal contrast modulation),
and presented in an annular aperture surrounding fixation (inner radius:
1.5�, outer radius: 7.5�, grating contrast decreased linearly to 0 over the
outer and inner 0.5� radius of the annulus). Stimulus orientations were
determined pseudo-randomly (from 0 to 179�) to ensure an approxi-
mately even distribution of orientations in each run. Shortly (6.5 s) after
the stimulus had disappeared, a black line (length: 2.8�, width: 0.1�)
appeared at the center of the screen at an initially random orientation.
The line remained on screen for 4 s, and disappeared gradually over the
last 1 s of this window. Participants gave their response by adjusting the
orientation of this line to match the previously seen grating, using
separate buttons for clockwise or counterclockwise rotation on an MRI-
compatible button box.

Participants completed 10–18 stimulus runs. Each scan session also
included two runs of visual localizer stimuli. In these runs, flickering
checkerboard patterns (check size: 0.5�, contrast: 100%, display rate:
10 Hz, i.e. a new random checkerboard pattern was presented every
100 ms) were shown in 12 s blocks, interleaved with fixation blocks of
equal duration. Checkerboards were presented in the same visual aper-
ture as the orientation gratings.

Retinotopic maps of visual cortex were acquired in a separate scan
session using standard retinotopic mapping procedures (DeYoe et al.,
1996; Engel et al., 1997; Sereno et al., 1995).

2.4. Functional MRI data preprocessing and regions of interest

Functional images were motion-corrected using FSL's MCFLIRT
(Jenkinson et al., 2002), and aligned to a previously collected anatomical
reference scan using FreeSurfer (Fischl et al., 1999). To remove slow
drifts in the BOLD signal, voxel time series were temporally filtered with
a high-pass cut-off period of 40 s. No slice timing correction was per-
formed. Residual variations in the BOLD signal induced by motion were
removed through linear regression (using 18 motion regressors, con-
sisting of the 6 translation & rotation estimates from MCFLIRT, the
squares of these numbers and their temporal derivatives).

Regions of interest (ROIs; V1, V2 and V3) were defined on the
reconstructed cortical surface using conventional procedures (DeYoe
et al., 1996; Engel et al., 1997; Sereno et al., 1995). Within each reti-
notopically defined area, all voxels that responded to the localizer
stimulus above a lenient threshold (p < 0.05 uncorrected) were selected
for subsequent analysis. Functional time series data were analyzed in the
native space for each participant.

Voxel time series were Z-normalized using corresponding time points
of all trials within each run (that is, activity in the Nth time point within
each trial was normalized by the mean and standard deviation of activity
across the Nth time points of all trials within the same run). To obtain an
activation pattern for each trial, activity was averaged across the first 4 s
of each trial, after shifting each time series by 4 s to account for hemo-
dynamic lag in the BOLD signal. This choice of time window ensured that
no activity from the subsequent response window (which started 8 s after
trial onset) was included in the analyses.

2.5. Simulation procedures

To determine how noise correlations impact decoding performance,
we simulated fMRI data with known covariance structure, and tested the
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degree to which each of four decoding models recovered the information
available in the simulated fMRI activation patterns. Specifically, for each
of 10 hypothetical observers, we generated fMRI activation patterns for
each of 1000 visual orientation stimuli, using M ¼ 500 voxels. The
response of a single voxel on a given trial was simulated as:

bi ¼ fiðsÞ þ εi (1)

where bi is the response of the i-th voxel, s is the orientation of the
simulated stimulus (drawn from a uniform distribution over the interval
½0; 180�), fiðsÞ is voxel i's orientation tuning curve and εi is random noise
(see also Fig. 1A). Across voxels, this results in a vector (or “pattern”) of
activity b ¼ fbig. The noise across voxels ε ¼ fεig was drawn from a
multivariate Normal distribution with mean 0 and voxel-by-voxel
covariance Σ:

ε � N ð0;ΣÞ (2)

The noise covariance matrix Σ was simulated as a combination of a

correlation matrix RðfullÞ ¼ fRðfullÞ
ij g and a vector of standard deviations

τ ¼ fτig, such that the covariance between a pair of voxels ði; jÞ was
given by:

Σij ¼ τiτjR
ðfullÞ
ij (3)

Each element of the vector τ was drawn randomly from a Normal
distribution with mean 3 and variance 0:22, and the noise correlation

RðfullÞ
ij between voxels i and j was given by:

RðfullÞ
ij ¼

�
1; if i ¼ j
RðtuningÞ
ij þ RðarbitraryÞ

ij ; if i≠j (4)

in which RðtuningÞ
ij is a function of the tuning similarity between voxels i

and j, defined as the correlation between their tuning curves:

RðtuningÞ
ij ¼

�
1; if i ¼ j
0:2 � corr

�
fiðsÞ; fjðsÞ

�
; if i≠j (5)

and RðarbitraryÞ ¼ fRðarbitraryÞ
ij g was created by shuffling the matrix

RðtuningÞ ¼ fRðtuningÞ
ij g, such that its rows and columns were rearranged in

the same, random order (which leaves the diagonal of the matrix intact).
That is, if z is a random re-ordering of voxel indices 1 : M, then the
arbitrary noise correlation between voxels i and j is given by:

RðarbitraryÞ
ij ¼ RðtuningÞ

zizj
(6)

This procedure alters the structure of noise correlations such that they
become independent of tuning similarity, while keeping overall levels of
correlated noise constant, allowing for an appropriate comparison be-
tween the effects of the two correlation structures, RðtuningÞ and RðarbitraryÞ,
on decoding performance.

Orientation tuning curves f ðsÞ ¼ ffiðsÞg were simulated as a linear
combination of 8 bell-shaped basis functions:

fiðsÞ ¼
X8

k¼1

WikgkðsÞ (7)

where gkðsÞ is the k-th basis function, andWik is the weighting coefficient
on this basis function for the i-th voxel. Basis functions were positive half-
wave rectified cosine functions raised to the fifth power (cf. Brouwer and
Heeger, 2011; van Bergen et al., 2015):

gkðsÞ ¼
h
cos

� π

90
ðs� φkÞ

�i5
þ

(8)

where φk is the preferred orientation of the k-th basis function. Preferred
orientations were equally spaced, with one basis function tuned
3

maximally towards horizontal orientations. Weights were drawn
randomly from a standard Normal distribution.

Given these simulation procedures, the conditional probability of a
voxel activation pattern given a stimulus is defined as:

pðbjsÞ∝ exp
�ðb� f ðsÞÞTΣ�1ðb� f ðsÞÞ� (9)

2.6. Decoding algorithm (simulations)

To test what sources of correlated noise are particularly relevant to
decoding performance, we compared three decoding models, each of
which ignored some aspects of the simulated data. Specifically, we
assumed that the three decoders had perfect knowledge of voxel tuning
functions f ðsÞ ¼ ffiðsÞg, but varied in their assumed structure of voxel
covariances Σ. That is, the covariance between two voxels is given by:

Σij ¼ τiτjRij (10)

While noise standard deviations τi and τj of voxels i and j were kept
constant across the decoding models, each of the decoders made different
assumptions regarding the correlationmatrix R ¼ fRijg. The first decoder
assumed that RðnaïveÞ is theM �M identity matrix that captures no shared
noise between voxels. The second decoder with correlation matrix
RðarbitraryÞ accounted for shared variability between voxels of arbitrary
structure and the third decoder captured tuning-dependent correla-
tions RðtuningÞ.

By applying Bayes rule with a flat stimulus prior, we obtained for each
simulated trial of voxel activity the posterior probability distribution
over stimulus orientation:

pðsjb;RÞ ¼ pðbjs;RÞpðsÞ
∫ pðbjs;RÞpðsÞds (11)

where R indicates the noise model that was used for decoding. Thus, the
actual posterior distribution encoded in a pattern of activity is given by
pðsjb;RðfullÞÞ, while the posteriors decoded using alternative models are
denoted by pðsjb;RðnaïveÞÞ, pðsjb;RðarbitraryÞÞ and pðsjb;RðtuningÞÞ. The cir-
cular mean of each decoded posterior distribution served as the orien-
tation point-estimate, while its width (circular standard deviation)
quantified the degree of uncertainty in that estimate (see Fig. 1A). These
statistics were computed by numerical integration.

2.7. Decoding benchmarks (simulations)

We used three benchmark tests to evaluate and compare between the
three decoders. The first test focused on decoding accuracy of the pre-
sented orientations. Decoding accuracy was quantified by computing the
circular correlation coefficient between the presented and decoded ori-
entations across trials, for each noise model and each simulated observer
(see Fig. 1C). The second test focused on the degree of uncertainty in the
decoded orientation estimates. Specifically, for each decoder and simu-
lated observer, we took the width (or uncertainty) of the decoded pos-
terior distribution for each simulated trial of data, and correlated this
with the actual uncertainty in the data (that is, the uncertainty in
pðsjb;RðfullÞÞ) for the same set of data (see Fig. 1D). The third test assessed
the overall amount of information lost when a posterior distribution is
decoded using an incomplete noise model. This information loss was
quantified as the Kullback-Leibler divergence from each decoded distri-
bution (pðsjb;RðnaïveÞÞ, pðsjb;RðarbitraryÞÞ and pðsjb;RðtuningÞÞ) to the true
posterior distribution (pðsjb;RðfullÞÞ), for each trial of simulated data (see
Fig. 1E). The KL-divergence from a distribution Q to a target distribution
P is defined as:

DKLðP k QÞ ¼ ∫ pðxÞlog pðxÞ
qðxÞ dx (12)



Fig. 1. Simulations to compare the effect of noise correlations on decoding performance. (A) Illustration of simulation procedures and decoder output. Each activation pattern (b) is
simulated as a sum of a stimulus-dependent (tuning) component and random noise. This noise has a voxel-by-voxel correlation structure RðfullÞ . Given a generative model of the voxel tuning
properties and noise correlations, a posterior distribution pðsjbÞ can be calculated. The (circular) mean of this distribution serves as the point estimate of the simulated stimulus orientation,
while its width (circular standard deviation) quantifies the amount of uncertainty in this estimate. (B) Posterior distributions calculated with different noise correlation models, for an
example trial of simulated data. Note that the distribution computed using the RðtuningÞ model (shown in blue) is very close to the true posterior distribution (shown in black). The dis-
tribution calculated using arbitrary noise correlations (shown in green) is much less accurate, and very similar to the posterior distribution obtained with the naïve decoder (shown in
yellow). (C) Top: orientation estimates for the RðtuningÞ decoder, for one hypothetical observer. Bottom: comparison of point-estimate orientation decoding accuracy between decoders,
quantified as the circular correlation between presented (simulated) and decoded orientations. The noise ceiling was calculated as the accuracy achieved by a decoder that has full
knowledge of all noise correlations (RðfullÞ). (D) Top: uncertainty estimates for the RðtuningÞ decoder, for one simulated observer. The true uncertainty in the data was computed as the
circular standard deviation of the posterior distribution obtained using a decoder that has full knowledge of all noise correlations (pðsjb;RðfullÞÞ), for each trial of data. Plotted are the ranks
of the true and decoded uncertainty values within the 1000 trials in the data set. Bottom: comparison of uncertainty decoding accuracy across decoders, quantified as the rank correlation
(Spearman's rho) between true and decoded uncertainty. (E) Top: illustration of Kullback-Leibler divergence (DKL) to the true posterior distribution, from a posterior distribution obtained
with the RðtuningÞ model, for one example trial (the same trial shown in B). The orange-shaded region corresponds to the area between the distributions that contributes positively to the KL-
divergence. Bottom: comparison of the overall accuracy of posterior distributions produced by each decoder, quantified as the KL-divergence from the decoded to the true posterior
distribution. This KL-divergence measures the information lost by approximating the true posterior with a posterior distribution decoded under different assumptions. In C-E, bars and error
bars correspond to the mean ± 1 SEM.
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KL-divergences were calculated numerically for each noise model and
each trial, and then averaged across trials.

To assess whether the correlations computed in the first two bench-
mark tests were significantly different between the three decoders, we
ran paired t-tests across observers on the Fisher-transformed correlation
coefficients. The mean correlation coefficient across observers was
calculated by taking the mean of the Fisher-transformed values, and then
transforming this mean back to the correlation scale. Differences in KL-
divergence between the three decoders were evaluated using paired t-
tests across observers, on the mean KL-divergences for each noise model
across trials.

2.8. Analysis of fMRI data

2.8.1. Tuning & noise
Voxel tuning and noise properties were estimated based on equation

(1). Specifically, we assumed that the response of each voxel on a given
trial was a sum of an orientation tuning function and multivariate Nor-
mally distributed random noise (equation (2)). Each voxel tuning func-
tion was assumed to be a linear combination of the idealized, bell-shaped
tuning functions of eight hypothetical neural populations. Thus, the
tuning properties of each voxel i are summarized by the coefficients Wi

on these eight basis functions, and estimating a voxel's tuning properties
consisted in estimating these coefficients.

The vector (or pattern) of voxel responses measured on trial t is

denoted by bðtÞ, and B ¼ ½bð1Þ;…;bðNÞ� is the M � N matrix of all such
patterns for a given observer (whereM is the number of voxels and N the
number of trials for that observer). Tuning coefficientsWwere estimated
using ordinary least squares (OLS) regression:

cW ¼ BgðsÞT�gðsÞgðsÞT��1
(13)

where gðsÞ ¼ fgkðstÞg are the predicted responses of the eight neural
populations to the sequence of presented stimuli across trials (see
equation (8)). Control analyses verified that our results were robust to the
particular choice of basis functions used to describe voxel tuning curves
(Supplementary Fig. 1). Note that if correlated noise were known to
depend on tuning similarities between voxels, an OLS regression would
not be the most statistically efficient estimator. However, since we do not
want to assume a priori that tuning and noise correlations are linked
(which would constitute circular inference), the OLS estimator is
appropriate for these analyses.

Next, we computed the tuning similarity between voxels by calcu-
lating the correlation coefficient between their tuning curves. To ensure
that the estimated correlation coefficient did not reflect noise shared
between same-trial voxel responses, tuning similarity between each pair
of voxels was calculated based on asynchronous presentations of orien-
tation stimuli. To this end, we split our fMRI data into two independent
sets. The first set consisted of voxel activations and stimuli fBð1Þ; sð1Þg
from odd-numbered fMRI runs, while the second set fBð2Þ; sð2Þg came
from even-numbered fMRI runs. By running the OLS regression sepa-
rately for each set of data, we obtained two sets of estimated tuning

coefficients, cWð1Þ
and cWð2Þ

. For each pair of voxels ði; jÞ, we then deter-
mined the similarity in their tuning preferences by cross-correlating the
tuning curves estimated on the two sets of data:

drtuningði; jÞ ¼ corr
�cWð1Þ

i gðsÞ;cWð2Þ
j gðsÞ

�
(14)

The level of noise on a given trial was computed as the difference
between a voxel's response and the value predicted by its estimated
tuning for the presented stimulus:

bεit ¼ (
bðtÞi � cWð1Þ

i gðstÞ; if t 2 partition 1

bðtÞi � cWð2Þ
i gðstÞ; if t 2 partition 2

(15)
5

Finally, the noise correlation between voxels i and j was estimated as:

drnoiseði; jÞ ¼ corr
�bε i;bε j� (16)

2.8.2. Function fits
To determine how noise correlations might depend on the degree of

similarity in tuning preferences between voxels, we first sorted pairs of
voxels into 20 bins of similar tuning correlations. Within each bin, we
then calculated the average Fisher-transformed noise correlation and
tuning correlation, across all voxel pairs in the bin. To these bin-averages,
we subsequently fit the following exponential decay function:

hðnÞ ¼ α exp
�
� β

�
1�

D drtuningE
n

��
þ γ (17)

where
� drtuning�

n
is the mean (estimated) tuning similarity between voxel

pairs in the n-th bin. This function describes a decay in noise correlations
with decreasing tuning similarity between voxels. This decay starts from
an initial value set by parameter α, and the rate of decay is governed by β.
The third parameter γ describes an overall baseline correlation between
voxels. These parameters were fit by minimizing the sum of squared
residuals S, between the measured and predicted (Fisher-transformed)
noise correlations:

S ¼
X
n

D
arctanh

�drnoise�E
n
�arctanhðhðnÞ Þ

��
(18)

where
�
arctanh

	 drnoise
�
n
is the mean Fisher-transformed (estimated)

noise correlation between voxel pairs in the n-th bin. Parameter fits were
constrained such that the amplitude (α) and decay rate (β) were always
non-negative. To assess the goodness-of-fit of the exponential decay
function to the data, we computed the adjusted coefficient of determi-
nation (R2

adj), which includes a correction for the degrees of freedom in
each model. A one-tailed Wilcoxon-signed rank test was then used to
determine whether the R2

adj values across participants were reliably
larger than 0, which would indicate a significant amount of variance
explained (note that a one-tailed test is appropriate since our one-sided
hypothesis is that the function explains more variance than expected
by chance, not less).

3. Results

This paper examines the relevance of shared noise to the decoding of
stimulus information from cortical activity. Specifically, we will contrast
two forms of shared noise: noise that is shared between voxels similarly
tuned to the decoded stimulus feature, and noise that is correlated but
does not depend on voxel tuning preference (i.e., it has arbitrary struc-
ture). We first provide a theoretical comparison of these two forms of
noise, using simulations, before turning to an investigation of the actual
structure of fMRI noise correlations in human visual cortex, and the de-
gree to which shared noise affects decoding accuracy in practice.
3.1. Decoded information is dominated by tuning-dependent noise
correlations

Wewill first demonstrate how noise correlations can impact decoding
performance in theory. In order to do so, we simulated fMRI data for 10
hypothetical observers, who each participated in 1000 experimental
trials in which orientation stimuli were shown. Voxel responses on each
trial were simulated as the sum of an orientation tuning curve and
random noise (Fig. 1A, see also Methods). Some of this noise was inde-
pendent and specific to each individual voxel, while the remainder was
shared between voxels. Specifically, we introduced noise that is shared
between voxels of similar orientation tuning preference, and noise shared
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randomly between voxels irrespective of their tuning properties. Each of
these two forms of shared noise had an equal contribution to the overall
levels of noise in the data.

Each pattern of simulated data contains information about the stim-
ulus that was presented to the hypothetical observer on that trial.
Because the data is noisy, the amount of information contained in the
pattern of activity is necessarily limited: even with perfect knowledge of
the simulation parameters, the stimulus cannot be inferred with absolute
accuracy. Rather, there is some degree of uncertainty about the stimulus
that gave rise to the observed activation pattern. Mathematically, the
information contained in a pattern of activity can be described by the
posterior distribution pðsjbÞ, which gives the probability that stimulus s
was presented to the hypothetical observer, given the observed activa-
tion pattern b (Fig. 1A – note that the posterior also reflects prior
knowledge, but we assume an uninformative prior distribution here (see
Methods)). The wider this distribution, the greater the range of stimuli
consistent with the observed pattern of voxel activity, and the larger the
uncertainty about s. Importantly, this posterior distribution depends on
the assumptions used in the decoder, and the degree to which these as-
sumptions match the generative model by which the data arose (i.e., the
model and parameter values used in the simulation). Here, we will
evaluate which assumptions are more, and which are less, important for
recovering the information contained in the data.

Our focus is on assumptions regarding noise; accordingly, we assume
that the decoders compared here have perfect knowledge of the simu-
lated voxel tuning properties. We denote by pðsjb;RðfullÞÞ the posterior
probability distribution of a decoder that has full knowledge of the
simulated noise correlation structure RðfullÞ. How accurately can
pðsjb;RðfullÞÞ be approximated if some or all of the noise correlations in
RðfullÞ are ignored? To answer this question, we will compare the per-
formance of three decoders, each of which uses different assumptions
regarding the noise correlation structure. The first decoder, with (diag-
onal) noise correlation structure RðnaïveÞ, is a naïve decoder that assumes
independent noise between voxels (i.e., no noise correlations). The sec-
ond decoder only has knowledge of shared noise that is unrelated to
voxel tuning properties, with correlation structure RðarbitraryÞ. The third
decoder only accounts for those noise correlations that align with voxel
tuning similarities, with structure RðtuningÞ. Using each of these decoders,
we calculated a posterior distribution over stimulus orientation for each
trial of simulated voxel activity, and compared the so-obtained posterior
distributions with pðsjb;RðfullÞÞ.

An example of the posterior distributions obtained using each of the
three decoders for one simulated trial of data is shown in Fig. 1B. Also
shown in this figure is the posterior distribution that was obtained using
full knowledge of the simulation's parameter values (i.e., pðsjb;RðfullÞÞ),
which describes the actual information contained in the activity pattern.
As can be seen in the figure, a decoder that uses naïve assumptions
regarding the covariance structure produces a posterior distribution that
is very different from the true posterior distribution pðsjb;RðfullÞÞ,
concentrating probability in a narrow region. Interestingly, the decoder
that accounts for shared voxel noise that is of arbitrary structure performs
about as poorly as the naïve decoder, producing a nearly identical and
similarly overconfident posterior distribution. Incorporating tuning-
dependent correlations into the decoder, however, makes a large dif-
ference in terms of performance: the decoded posterior distribution of
this decoder very closely approximates the true posterior distribution
contained in the simulated pattern of activity on that trial.

To quantify and summarize these observations across simulated trials
and subjects, we relied on three benchmark tests. For the first test, we
compared the accuracy of the orientation estimates produced by each
decoder, quantified as the circular correlation coefficient between
simulated and decoded orientations (Fig. 1C). For the naïve decoder, the
orientation estimates were fairly accurate (〈r〉 ¼ 0.61; one-sample t-test:
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t(9) ¼ 59.21, p < 10�12). Compared to the naïve decoder, a decoder that
assumes arbitrary correlations between voxels did not significantly in-
crease in decoding performance (paired t-test; t(9) ¼ 2.06, p ¼ 0.07).
Accounting for tuning-dependent correlations, however, caused a sub-
stantial and significant improvement with respect to both the naïve and
arbitrary-shared-noise decoders (paired t-tests; t(9) ¼ 25.04, p < 10�8 &
t(9) ¼ 25.64, p < 10�8, respectively). Thus, a decoder that captures
tuning-dependent noise correlations outperforms the other two decoders
in terms of its estimates of the presented stimulus orientation.

The second benchmark test examined how well each decoder
captured the amount of uncertainty in the decoded stimulus orientations.
Specifically, we assessed the degree to which the width of the decoded
posterior distributions matched that of the true posterior distribution
pðsjb;RðfullÞÞ, for each of the three decoders and across trials (Fig. 1D).
This was done by computing the rank correlation coefficient (Spearman's
rho) between the true and decoded uncertainty values. Although signif-
icant, this correlation for the naïve decoder was rather weak (〈r〉 ¼ 0.32;
one-sample t-test: t(9) ¼ 22.36, p < 10�8). Compared to the naïve
decoder, accounting for arbitrary noise correlations did not significantly
improve decoding accuracy of uncertainty (paired t-test; t(9) ¼ �0.85,
p ¼ 0.42). The decoder that captures tuning-dependent noise correla-
tions, however, again outperformed the other two noise models on this
test (paired t-tests; t(9)¼ 21.31, p< 10�8& t(9)¼ 20.58, p< 10�8, for the
comparison between naïve and tuning-dependent decoders, and arbi-
trary and tuning-dependent decoders, respectively). This advantage of
the tuning-dependent decoder was rather pronounced, with uncertainty
decoding accuracy increasing from r ≈ 0.3 to r ≈ 0.8 when tuning-
dependent shared noise was accounted for.

The third and final test computed the Kullback-Leibler divergence
from the decoded posterior distribution to the true posterior distribution,
for each of the three decoders and on every trial (Fig. 1E). The KL-
divergence measures the information that is lost when the true poste-
rior is approximated by an alternative distribution. Interestingly, this loss
is nearly zero for the decoder that accounts for tuning-dependent noise
correlations – despite the fact that this decoder ignores roughly half of all
shared noise in the data. By comparison, for the naïve and arbitrary-
correlations decoders, the decoded posterior distributions diverge
muchmore strongly from the true posterior distribution (paired t-tests vs.
the RðtuningÞ model; t(9) ¼ 77.06, p < 10�13 & t(9) ¼ 79.98, p < 10�13).

Together, these results indicate that tuning-dependent noise corre-
lations have the greatest impact on the amount of information that can be
recovered from patterns of cortical activity – much more so than other
forms of correlated noise. Although the actual amount of noise was
equally large for either arbitrary or tuning-dependent correlations, a
decoder that accounted for arbitrary correlations had almost no advan-
tage in terms of decoding accuracy on a naïve decoder. Rather, it was the
decoder that captured tuning-dependent correlations that showed the
greatest improvement in decoding accuracy of the posterior distributions
contained in the simulated data.

3.2. Noise correlations in human visual cortex

Our simulation results demonstrate that tuning-dependent noise
correlations are especially relevant to decoding performance, while other
correlations may be safely ignored. But does noise in actual fMRI data
depend on tuning similarity between voxels? To investigate this, we re-
analyzed fMRI data obtained from 18 human participants, while they
viewed oriented grating stimuli (in the context of a different study (van
Bergen et al., 2015)). We analyzed cortical activity evoked by each
stimulus in visual areas V1, and V2 and V3 combined. The fMRI re-
sponses were used to estimate a tuning curve for each voxel, and noise on
each trial was calculated by subtracting the value predicted by the voxel's
tuning curve from the voxel's response. For each pair of voxels, we then
computed the similarity in the estimated tuning curves ( drtuning ) and the



Fig. 2. Average relationship between drnoise and drtuning , across 18 observers, in V1-V3 combined (A) and separately for striate and extrastriate areas (B). Results for individual subjects are
shown in Supplementary Fig. 2. Lines and shaded regions show the mean ± 1 SEM noise correlation across observers, in 20 equally spaced tuning similarity bins.
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degree of noise shared between the two voxels ( drnoise). Voxel pairs were
subsequently sorted into bins of similar tuning correlations, and averages
were computed across the data in each bin (Fig. 2). To determine
whether the degree of shared noise was related to similarities in voxel
tuning curves, we fit the bin averages with an exponential decay func-
tion. The goodness-of-fit of this function was quantified by computing for
each observer the overfitting-adjusted coefficient of determination�
R2
adj

�
, and a Wilcoxon signed-rank test on the R2

adj values was used to

assess whether the exponential decay function explained significant
variance in the data, across observers.

The average relationship between drtuning and drnoise across visual areas
V1, V2 and V3 is shown in Fig. 2A. As can be seen in this figure, noise
correlations appear to be largest between voxels that have very similar
tuning properties ( drtuning near 1), and then diminish as tuning curves grow
more dissimilar. An exponential decay with decreasing tuning similarity
described this relationship very well across participants (〈R2

adj〉 ¼ 0.73,
p < 0.001). When voxels are split up into striate (V1) and extrastriate
areas (V2 & V3), the average relationship between tuning similarity and
shared noise (shown in Fig. 2B) in these ROIs is similar to that in the
combined ROI. In both ROIs, the fitted exponential decay functions
explained significant variance across observers (striate ROI:
〈R2

adj〉 ¼ 0.45, p < 0.01; extrastriate ROI: 〈R2
adj〉 ¼ 0.83, p < 0.001). This

finding was robust to the particular choice of functions used to fit voxel
tuning curves (Supplementary Fig. 1). These results indicate that tuning-
dependent shared noise, which our simulations revealed to be so
important for decoding, is present in fMRI data from human vi-
sual cortex.

Neighboring voxels in cortex tend to have similar tuning properties
(Freeman et al., 2011; Mannion et al., 2010; Sasaki et al., 2006; Swisher
et al., 2010). At the same time, various nuisance variables, such as eye or
head movements by the participant, can induce correlated noise between
nearby voxels (Murphy et al., 2013; Power et al., 2012). Could a com-
bination of these effects, rather than similarity in voxel tuning per se,
explain the observed link between voxel tuning similarity and noise
correlations? To test this, we repeated the analysis described above, with
spatial proximity as an extra factor in the exponential decay functions
that were fit to the data. We found that when this potential mediating
factor was accounted for, the relationship between tuning similarity and
shared noise remained generally significant (Supplementary Fig. 3).
Interestingly, this parallels results frommacaque visual cortex (Bair et al.,
2001; Smith and Kohn, 2008; Zohary et al., 1994), for which noise is
preferentially shared between similarly tuned neurons.

Thus far, we have shown in simulations that forward models of fMRI
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activity that account for tuning-dependent noise correlations best char-
acterize the probability distributions contained in data, and moreover,
that such correlations are found in fMRI data from human visual cortex.
Together, these findings suggest that by modeling tuning-dependent
shared noise, it may be possible to decode probability distributions
from cortical activity in human observers, thereby gaining insight into
moment-to-moment fluctuations in the fidelity of cortical stimulus rep-
resentations. Indeed, a decoder based on this principle can characterize
the uncertainty in its stimulus estimates, while a naïve decoder fails to do
so (Fig. 3; see also van Bergen et al. (2015)).

4. Discussion

We have shown that accounting for shared noise is important for
forward decoding models of fMRI activity – without an explicit account
of shared noise in the decoder, it is difficult to go beyond a mere pre-
diction of the most likely stimulus, and assess the degree of uncertainty in
the pattern of voxel activity. Specifically, our simulations demonstrate
that probability distributions (that indicate uncertainty) become inac-
curate when computed using ‘naïve’ decoders that ignore noise correla-
tions in the data. We moreover find that a particular kind of correlated
noise is most important to forward models of cortical activity, namely
noise that is shared between voxels with similar tuning curves for the
decoded stimulus feature. Including such tuning-dependent noise in the
decoder's generative model enables the measurement of probability
distributions that are very close to the true distributions, with widths that
closely track the actual trial-by-trial uncertainty in the simulated activity
patterns. In contrast, incorporating arbitrary noise correlations into the
decoding model provided little improvement in decoding performance,
even though these sources of noise contributed substantially and equally
to the total amount of noise in the data. Interestingly, when analyzing
fMRI data obtained from human visual cortex, we found that cortical
noise correlations are also tuning-dependent. Moreover, and much in line
with our simulations, a decoder that accounts for such tuning-dependent
shared noise accurately predicted the trial-by-trial uncertainty in cortical
activity patterns, while a naïve decoder failed to appropriately capture
these moment-to-moment fluctuations in uncertainty.

Functional MRI only provides an indirect measure of neural activity
(Lima et al., 2014; Logothetis et al., 2001), samples the aggregate signal
from large neural populations rather than single cells, and is contami-
nated by many sources of noise, including scanner-related noise, physi-
ological noise, and noise due to head or eye movements made by the
participant (Greve et al., 2013; Henriksson et al., 2015; Kay et al., 2013;
Power et al., 2012). An important next step would therefore be to



Fig. 3. When tuning-dependent correlations are accounted for, uncertainty can reliably be estimated from fMRI data obtained from human visual cortex (data replotted from van Bergen
et al. (2015). (A) Results from a representative subject, using a naïve decoder (left) and a decoder that models shared noise between similarly tuned voxels (right). Posterior distributions
were estimated from the activity patterns evoked in visual cortex (areas V1-V3) by orientation grating stimuli. The circular mean of each distribution served as the decoded orientation
estimate, while its width (circular standard deviation) indicated the decoded uncertainty in the activity pattern on that trial. Circles are centered on the decoded orientations and plotted
against the presented stimulus orientations, while the size of each circle is proportional to the decoded uncertainty on that trial. For both decoding models, circles tend to lie near the
diagonal (or in the far corners, due to the circularity of orientation space) indicating fairly accurate orientation estimates (across participants, the mean (circular) correlations between
presented and decoded orientations were 0.57 and 0.69, for the naïve decoder and the one accounting for tuning-dependent shared noise, respectively). The decoder that incorporates
shared noise captures the trial-by-trial uncertainty in the data reasonably well, as reflected by the greater dispersion of larger circles (greater uncertainty), compared to smaller circles,
around the diagonal. The naïve decoder, on the other hand, fails to appropriately characterize the uncertainty in the data, as indicated by the fairly uniform distribution of circles around
the diagonal, regardless of their size. (B) We quantified each decoder's ability to characterize uncertainty by relying on the relationship between uncertainty and variability (as the true
uncertainty in real fMRI data is a priori unknown). More specifically, to the extent that the noise model appropriately captures the actual noise structure of the fMRI data, decoded
uncertainty on a single trial should be linked to the variability in orientation estimates across trials. Trials were divided into 4 bins of increasing uncertainty, for each observer and for each
of the two decoders. Colored dots show, for each participant, the mean decoded uncertainty, and mean variability of decoded stimulus estimates, across all trials in each bin, with bins
indicated by different colors. The dashed line corresponds to the best linear fit of the data. The results obtained for the decoder incorporating tuning-dependent noise indicate a clear link
between decoded uncertainty and across-trial variability in orientation estimates (r ¼ 0.91, p < 10�15). The naïve decoder, in contrast, failed to capture this relationship. This indicates that
modeling shared noise is important for the decoding of uncertainty in fMRI activity patterns. See for further information, including a more detailed description of the decoding models and
their analysis, van Bergen et al. (2015).

1 There are some notable exceptions to this general observation. For example, the
optimal classification boundary in a support vector machine (SVM) depends on the con-
tours of the voxel response distributions across trials, which are shaped differently when
noise is correlated. These decoders, however, do not capture the full probabilistic rela-
tionship between stimuli and responses, and as such, are ill-equipped for measuring
uncertainty.
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establish the extent to which the decoded probability distributions
indirectly reflect the uncertainty in neural population activity, as
opposed to uncertainty due to noise in the fMRI measurements alone. In
recent work, using similar tuning-dependent noise covariance models as
discussed here, we took a first step in addressing this issue by correlating
decoded distributions with subject behavior (van Bergen et al., 2015).
Interestingly, our analyses revealed that decoded uncertainty was reli-
ably linked with the accuracy of the observer's response, suggesting that
the decoded probability distributions reflected, at least to some degree,
the trial-by-trial uncertainty in underlying neural populations. The cur-
rent study adds to this work by demonstrating the importance of different
forms of correlated noise to this approach. This illustrates the necessary
conditions for accurate probabilistic decoding from fMRI activity, and
may facilitate the development of future probabilistic pattern analysis
techniques in functional neuroimaging.

The majority of existing fMRI decoding algorithms do not explicitly
account for noise correlations, but rather assume that variability is
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independent between voxels1 (e.g. Kay et al., 2008; Brouwer and Heeger,
2009; Serences et al., 2009; Jehee et al., 2012; Ester et al., 2013). While
such algorithms can provide reasonable estimates of the stimulus values
presented to the observer, our results indicate that substantial additional
information can be extracted from the data using a decoder that explicitly
incorporates shared noise. Moreover, our results suggest that when
constructing such a decoder, it is important to focus mostly on shared
noise that resembles a tuning-based response. This observation may help
to constrain the noise covariance structure in forward models of fMRI
activity, by modeling specifically the most detrimental correlations.
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Previous work has quantified the impact of noise correlations on the
encoding and decoding of information across repeated presentations of
the same stimuli (reviewed in Averbeck et al., 2006). For example, when
evaluated across multiple presentations, tuning-dependent shared noise
has been shown to decrease the mean precision with which a stimulus
can be encoded in neural activity (Abbott and Dayan, 1999; Averbeck
and Lee, 2006; Moreno-Bote et al., 2014; Smith and Kohn, 2008; Zohary
et al., 1994). Similarly, the stimulus estimates of decoders that ignore
noise correlations between like-tuned neurons are on average less accu-
rate when evaluated across many stimulus presentations (Averbeck and
Lee, 2006; Wu et al., 2001) – a finding we replicate for like-tuned fMRI
voxels in Fig. 1C. By contrast, the focus of the current study is on the
gamut of information contained in a single response pattern in cortex,
characterized by a probability distribution over all possible in-
terpretations of the cortical response. This ability to accurately extract
the uncertainty of cortical information from a single neural population
response is highly relevant to studies of cortical processing.

The relevance of uncertainty and probability distributions is perhaps
best illustrated in the context of the ideal observer framework. Theo-
retically, it can be shown that decision-making agents achieve the best
performance (i.e., the smallest errors or largest reward) if they use the
uncertainty in their knowledge to calibrate their decisions. This allows
the agent, for example, to discount in the decision-making process those
sources of evidence that are unreliable. An increasing body of behavioral
research suggests that the brain may operate like such an optimal agent
(reviewed in e.g. Fiser et al., 2010; Knill and Pouget, 2004; Ma and
Jazayeri, 2014; Pouget et al., 2013; Vilares and K€ording, 2011). The
ability to measure uncertainty with fMRI directly from human cortex
enables investigations into the neural basis of such human decision-
making under uncertainty (van Bergen et al., 2015). Being able to
characterize uncertainty may also be advantageous when investigating
internal neural variability per se. Although various external factors, such
as a change in stimulus contrast, can be directly linked to uncertainty,
some portion of neural response variability arises due to factors that are
of internal origin (Faisal et al., 2008; Renart and Machens, 2014). The
here presented decoding approach may open a window onto such
stimulus-independent effects on information processing in cortex (van
Bergen et al., 2015). Knowledge of uncertainty may also be beneficial to
the design of brain-computer interfaces (BCIs). Imagine, for instance, a
BCI that moves a robotic arm based on brain activity of a human oper-
ator. Due to various sources of noise, the reliability of the incoming brain
signals will fluctuate over time. A BCI with knowledge of the uncertainty
in these inputs could use this information to optimally integrate infor-
mation across different dimensions of the incoming signal in order to
arrive at the best possible interpretation of the intendedmotor command.
Moreover, if overall levels of uncertainty turned out to be unacceptably
high, the BCI could decide to delay executing the decoded motor com-
mand in order to avoid making erratic or unintended movements.

In conclusion, the here presented results show that including noise
correlations into forward models of fMRI activity enables more accurate
decoding of the gamut of information that is represented in a noisy
pattern of data. Specifically, accounting for shared noise that mimics a
stimulus-induced response provides a feasible method to characterize the
moment-to-moment uncertainty in cortical activity, which we hope will
open up new avenues for human neuroimaging research.
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