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Probabilistic Representation in Human Visual Cortex
Reflects Uncertainty in Serial Decisions

X Ruben S. van Bergen and X Janneke F.M. Jehee
Donders Institute for Brain, Cognition & Behavior, Radboud University, 6525 EN Nijmegen, The Netherlands

How does the brain represent the reliability of its sensory evidence? Here, we test whether sensory uncertainty is encoded in cortical
population activity as the width of a probability distribution, a hypothesis that lies at the heart of Bayesian models of neural coding. We
probe the neural representation of uncertainty by capitalizing on a well-known behavioral bias called serial dependence. Human observ-
ers of either sex reported the orientation of stimuli presented in sequence, while activity in visual cortex was measured with fMRI. We
decoded probability distributions from population-level activity and found that serial dependence effects in behavior are consistent with
a statistically advantageous sensory integration strategy, in which uncertain sensory information is given less weight. More fundamen-
tally, our results suggest that probability distributions decoded from human visual cortex reflect the sensory uncertainty that observers
rely on in their decisions, providing critical evidence for Bayesian theories of perception.
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Introduction
Many of our day-to-day decisions are plagued by uncertainty. For
example, when crossing a road, it is near impossible to estimate the
trajectories of oncoming traffic with absolute precision. Rather, our
perceptual estimates of vehicle trajectory patterns are uncertain, due
to variability and ambiguity in the sensory inputs. Numerous behav-
ioral studies have shown that human observers use knowledge of
sensory uncertainty when making perceptual decisions (Jacobs and
Fine, 1999; Ernst and Banks, 2002; Battaglia et al., 2003; Knill and
Saunders, 2003; Alais and Burr, 2004), but how does the brain rep-
resent this uncertainty in our sensory estimates?

Bayesian theories of neural coding propose that uncertainty is
represented in neural activity as the width of a probability distri-
bution (Zemel et al., 1998; Anastasio et al., 2000; Hoyer and
Hyvärinen, 2003; Jazayeri and Movshon, 2006; Ma et al., 2006;
Fiser et al., 2010). That is, neural population activity is typically
consistent with a whole range of stimuli, rather than a single valued
estimate. Mathematically, this range can be represented as a proba-
bility distribution over stimulus values. The width of the distribution
can be taken as a measure of the degree of uncertainty contained in
the population response, and it is this probabilistic information,
these theories propose, that observers use in their decision-making.
Using fMRI and a probabilistic decoding analysis, we have previ-
ously shown that probability distributions reflecting sensory uncer-
tainty can reliably be extracted from the human visual cortex (van
Bergen et al., 2015; van Bergen and Jehee, 2018). However, it remains
to be determined whether observers also use this representation of
uncertainty when making decisions. Although indirect evidence ap-
pears consistent with this notion (van Bergen et al., 2015), unequiv-
ocal support for the hypothesis is still lacking.

To study the neural code for uncertainty, we capitalize on a
well-studied behavioral bias called serial dependence (Cicchini et
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Significance Statement

Virtually any decision that people make is based on uncertain and incomplete information. Although uncertainty plays a major
role in decision-making, we have but a nascent understanding of its neural basis. Here, we probe the neural code of uncertainty by
capitalizing on a well-known perceptual illusion. We developed a computational model to explain the illusion, and tested it in
behavioral and neuroimaging experiments. This revealed that the illusion is not a mistake of perception, but rather reflects a
rational decision under uncertainty. No less important, we discovered that the uncertainty that people use in this decision is
represented in brain activity as the width of a probability distribution, providing critical evidence for current Bayesian theories of
decision-making.
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al., 2014; Fischer and Whitney, 2014; Liberman et al., 2014):
when a stimulus is embedded in a sequence, human observers
tend to judge it as being more similar to previously seen stimuli
than it really is (but see Gibson and Radner, 1937; Chopin and
Mamassian, 2012; Fritsche et al., 2017). Serial dependence is par-
ticularly well suited to the issue at hand because it appears to
reflect a statistically advantageous sensory integration strategy
(Cicchini et al., 2014; Fischer and Whitney, 2014). That is, con-
sidering that the natural environment is largely stable across time
(Dong and Atick, 1995), the statistically ideal observer integrates
past and present sensory inputs, weighting each by its associated
uncertainty. This integration process not only results in more
accurate behavior, but also biases behavioral estimates toward
previously seen stimuli. Critically, for the ideal observer, the mag-
nitude of the biasing effect depends on the degree of sensory
uncertainty. This, then, yields a straightforward prediction that
we leverage in the present study: if the decoded probability dis-
tributions reflect the uncertainty that is used in decisions (as
hypothesized by probabilistic theories of neural coding), then
decoded uncertainty should be directly linked to the magnitude
of the serial dependence bias observed in human behavior.

Our goals for the current study are therefore twofold: to in-
vestigate the computational goals underlying serial dependence
in perception, and in doing so, probe the neural representation of
sensory uncertainty. We first describe a theoretically ideal ob-
server who infers the stimulus from noisy sensory inputs in a
temporally predictable environment. We then test the model’s
predictions against behavioral and brain data obtained from
human observers, using a probabilistic decoding analysis to char-
acterize the degree of uncertainty in cortical stimulus representa-
tions (areas V1-V3). We find that serial dependence biases in
human behavior are consistent with a statistically ideal inference
process that not only takes into account the temporal stability of
the natural environment, but also respects the degree of uncer-
tainty associated with each successive input. More fundamen-
tally, these results suggest that probability distributions decoded
from population activity in human cortex reflect the uncertainty
that observers rely on when making perceptual decisions, provid-
ing critical evidence for Bayesian theories of perception.

Materials and Methods
Participants. Eighteen healthy, adult volunteers (7 female, 11 male, 22–31
years of age) participated in this study, which was approved by the Rad-
boud University Institutional Review Board. Subjects provided written
and informed consent before participation.

Data acquisition. We only briefly describe fMRI data acquisition and
preprocessing procedures here. For a full description, see van Bergen et
al. (2015), in which data were previously analyzed for a different purpose.
The MRI data were acquired at the Donders Center for Cognitive Neu-
roimaging, using a Siemens 3T Magnetom scanner equipped with an
eight-channel occipital receiver coil. Each scan session started with the
collection of a high-resolution T1-weighted anatomical scan, using an
MPRAGE (1 mm isotropic voxels, FOV 256 � 256). Functional images
covered all of occipital and some of posterior parietal and temporal cor-
tex, in 30 slices oriented perpendicular to the calcarine sulcus, and were
scanned with a T2*-weighted gradient-echo EPI sequence (TR 2000 ms,
TE 30 ms, FOV 64 � 64, 2.2 mm isotropic voxels, flip angle 90°).

Experimental design and stimuli. Visual activity and behavioral re-
sponses were measured while participants viewed orientation stimuli
inside an fMRI scanner. Throughout each run, participants were in-
structed to maintain visual fixation at a central black-and-white bull’s-
eye target (radius: 0.25 degrees). A run consisted of 18 orientation trials
presented in sequence, with a 4 s fixation period at the start and end of the
run. Each orientation trial was separated by a 4 s intertrial interval. A trial
(Fig. 1) started with the presentation of a sinusoidal grating (duration:

1.5 s; spatial frequency: 1 cycle/degree; randomized spatial phase, 2 Hz
sinusoidal contrast modulation; peak contrast: 10%) presented inside an
annulus surrounding fixation (inner radius 1.5 degrees; outer radius: 7.5
degrees; grating contrast decreased linearly to 0 over the outer and inner
0.5 degrees radius of the annulus). Grating orientation was determined
(pseudo-)randomly to ensure an approximately even sampling of orien-
tation space (a prerequisite for an unbiased decoding analysis). After a
brief interval (6.5 s), a black bar (width: 0.1 degrees; length: 2.8 degrees)
appeared at the center of the screen at an initially random orientation.
Participants reported the orientation of the stimulus by rotating the bar,
pressing separate buttons for clockwise or counterclockwise rotation on
an MRI-compatible button box. The bar remained on screen for a total of
4 s and started to fade-in to the background during the final 1 s of this
window to indicate the approaching response deadline.

Participants completed 10 –18 runs of the orientation task, totaling
180 –324 trials, as well as two visual localizer runs within the same scan
session. In the localizer runs, flickering checkerboard patterns were pre-
sented in 12 s blocks, within the same annular aperture as the orientation
stimuli (contrast: 100%; check size: 0.5 degrees; 10 Hz updating of the
random checkerboard pattern), and interleaved with fixation blocks of
equal duration. In a separate scan session, retinotopic maps of visual
cortex were acquired using standard retinotopic mapping procedures
(Sereno et al., 1995; DeYoe et al., 1996; Engel et al., 1997).

Visual stimuli in the fMRI scanner were displayed on a rear-projection
screen by a luminance-calibrated projector (Eiki, resolution 1024 � 768
pixels, 60 Hz refresh rate), and viewed by participants through a mirror
mounted on the head coil. Stimuli were generated by a Macbook Pro
computer running MATLAB and the Psychophysics Toolbox (Brainard,
1997; Pelli, 1997).

fMRI data preprocessing and ROIs. Functional images were motion-
corrected using FSL’s MCFLIRT (Jenkinson et al., 2002) and filtered in
the temporal domain to remove slow drifts in the BOLD signal (high-
pass cutoff: 40 s). Residual motion-induced fluctuations in BOLD signal
were removed through linear regression (18 motion regressors, con-
structed from the motion estimates produced by MCFLIRT). Functional
images were registered to a previously collected anatomical reference
scan using FreeSurfer (Fischl et al., 1999). All functional data were ana-
lyzed in native space.

ROIs (V1, V2 and V3) were defined on the reconstructed cortical
surface using standard procedures (Sereno et al., 1995; DeYoe et al., 1996;
Engel et al., 1997). Within each ROI, all voxels were selected that were

1500 ms

6000 ms

4000 ms

Figure 1. Trial structure. Each trial in the experiment started with the presentation of a
stimulus, followed by a fixation interval, and then a response window. Trials were separated by
a 4000 ms intertrial interval. Participants adjusted the orientation of a centrally presented bar to
match the previously seen stimulus orientation. The stimulus and response bar are not drawn to
true scale and contrast.
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activated by the functional localizer stimulus at a lenient statistical
threshold ( p � 0.05, uncorrected). Control analyses verified that our
results were highly robust to changes in the number of voxels selected for
analysis (i.e., a range of voxel selection thresholds between p � 0.005 and
p � 0.2).

Each voxel’s time series was z-normalized using the corresponding
time points of all trials in a given run. Activation patterns for each
trial were defined by first adding a 4 s temporal shift (to account for
hemodynamic delay), and then averaging together the first 4 s of each
trial. This selected time window was relatively short (4 s) so as to make
sure that activity from the behavioral response window was excluded
from analysis.

Decoding analysis. A generative model-based, probabilistic decoding
algorithm was used to characterize the trial-by-trial uncertainty in corti-
cal stimulus representations (van Bergen et al., 2015; van Bergen and
Jehee, 2018). The analysis assumes that voxel activations follow a multi-
variate normal distribution around a stimulus-dependent mean, where
the latter is described by the orientation tuning function of each voxel.
Voxel tuning curves were modeled as a linear combination Wf(s) of eight
bell-shaped basis functions (Brouwer and Heeger, 2011):

fk�s� � max�0, cos��
s � �k

90 ��5

(1)

where s is the orientation of the stimulus and �k is the preferred orienta-
tion of the k-th basis function (both in degrees). Basis functions are
weighed by coefficients W � {Wik} for each voxel i and basis function k.
The covariance of the noise distribution around the voxel tuning func-
tions is modeled:

� � (1 � �)I � ��T � ���T � �2WWT (2)

This noise covariance matrix is a combination of three components. The
first component is a diagonal of independent noise variances � � {	i},
where the variance of voxel i is given by 	i

2. The second component is a
constant that model fluctuations in signal shared by all voxels, and is
described by a parameter �. Finally, the term � 2WW T models noise, with
variance � 2, that is shared between voxels with similar orientation tuning
preferences.

Together, the orientation tuning curves and the noise covariance
structure make up the decoder’s generative model. This model specifies
the generative distribution p(b�s): the probability that a certain stimulus
s will evoke an activation pattern b. Thus, this distribution is given by a
multivariate normal with mean Wf(s) and covariance �:

p�b�s; �) � N �Wf�s�, �) (3)

where � � {W, �, �, �} are the parameters of the generative model.
Model parameters were estimated using the fMRI activation patterns

in a leave-one-run-out cross-validation procedure. Data were divided
into a training dataset (consisting of data from all but one fMRI run) and
a testing dataset (consisting of data from the remaining run). The param-
eters of the generative model were fit to the training data using a two-step
estimation procedure. In the first step of this procedure, tuning weights
W were estimated by ordinary least-squares regression. In the second
step of the parameter-estimation procedure, noise covariance parame-
ters (�, �, and �) were estimated by numerically maximizing their likeli-
hood. For further information regarding these fitting procedures, see van
Bergen et al. (2015).

After fitting the model to the training dataset, we tested the model on
the held-out (independent) testing dataset. For each test trial, we calcu-
lated the posterior distribution over stimulus orientation, conditioned
on the estimated model parameters �̂. Following Bayes’ rule, the poste-
rior distribution is given by:

p�s�b; �̂� �
p(b�s; �̂)p�s�

�p�b�s; �̂)p�s�ds

(4)

The stimulus prior p(s) was flat (reflecting the uniform distribution of
orientation stimuli), and the normalizing constant in the denomina-
tor was calculated numerically. The (circular) mean of the posterior
function served as an estimate of the presented orientation on that
trial, while the (circular) SD was taken as a measure of the degree of
uncertainty in the orientation estimate. The leave-one-run-out cross-
validation procedure was repeated until each run of fMRI data had
served as the test set once. To ensure that decoded uncertainty re-
flected trial-by-trial, rather than orientation-related (Appelle, 1972;
Furmanski and Engel, 2000; van Bergen et al., 2015), fluctuations in
the precision of a cortical representation, orientation-dependent ef-
fects on uncertainty were removed via linear regression (see also van
Bergen et al., 2015).

Behavioral data. The observer’s behavioral error on a given trial was com-
puted as the acute-angle difference between the reported and presented ori-
entation, with positive angles corresponding to clockwise deviations.
Participants generally performed well on the task, with errors in their orien-
tation reports averaging 6.29 � 0.25 (mean � SEM across observers).

To analyze serial dependence effects, data were first corrected for a
repulsion bias away from the cardinal axes (van Bergen et al., 2015) by
fitting each observer’s behavioral errors with a Gaussian-uniform mix-
ture distribution (Zhang and Luck, 2008) around a 4 degree polynomial
function of stimulus orientation. The residuals from this polynomial fit
were used in the remaining analyses. Trials for which the probability of
the fitted uniform distribution was larger than p � 0.5 were assumed to
be random guesses by the participant, and excluded from further analysis
(0 –3 trials of 180 –324 per observer).

The serial dependence effect in participant behavior was characterized
by means of a group-average bias curve, which was obtained as follows.
For each individual observer, the acute-angle difference between current
and previous stimulus orientation was first calculated for all consecutive
trials in each run. The mean behavioral error across trials was then com-
puted for each orientation difference in the experiment. The data were
smoothed with a moving average filter (window width � 20°) to create
observer-specific serial dependence curves across orientation differences.
Finally, the curves were averaged across observers. Procedures were iden-
tical for a control analysis in which serial dependence biases were com-
puted with respect to the behaviorally reported, rather than presented,
orientation on the previous trial.

Many of our analyses leveraged the symmetry of the serial dependence
effect by collapsing the serial dependence curve onto one side of the
graph. This was achieved by mirroring each participant’s curve in the
origin, and then averaging the mirrored and original curves together,
before computing the group average.

Temporal statistics of natural videos. Our theoretical framework (see
below) assumes that observers apply knowledge of natural temporal
statistics in their decisions. These temporal orientation statistics were
quantified using two databases of natural videos. The first database
contained 17 grayscale videos shot through head-mounted cameras
on cats roaming through various outdoor environments (Kayser et
al., 2003; Betsch et al., 2004). Videos in this database had a spatial
resolution of 320 � 240 pixels, a frame rate of 25 Hz, and were
recorded over temporal windows ranging from 38 to 200 s. The sec-
ond database consisted of 18 color videos of outdoor scenes in a
European city (Dorr et al., 2010). These videos were shot through
mostly static cameras (with two videos containing minimal tracking
motion), with spatial resolution 1280 � 720 pixels, frame rate 30 Hz,
and duration between 19 and 20 s (Dorr et al., 2010). We will refer to
these as the cat and city databases, respectively.

Videos were preprocessed by cropping each video to its central square
(i.e., 240 � 240 and 720 � 720 pixels for cat and city videos, respectively),
converting them to grayscale, and linearly normalizing the pixel intensi-
ties in each video frame to the 0 –1 range. The orientation content of each
video was then characterized as follows. First, each video frame was fil-
tered in the Fourier domain with a set of 12 orientation filters at three
spatial scales. Specifically, the k-th orientation filter at the l-th spatial
scale was defined as follows:


kl��, r� � Ok�� �Sl�r� (5)
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Ok�� � � � 1, if �angle��, �k�� 
180°

24
,

0, otherwise

Sl�r� � �1, if
l � 1

3


r

fNyq
�

l

3
0, otherwise

(6)

Here, � and r are polar angle and eccentricity coordinates in Fourier space
(corresponding to orientation and spatial frequency in the image do-
main). 
kl is the (k,l )-th Fourier filter, obtained by multiplying the k-th
orientation filter Ok(�) with the l-th spatial frequency filter Sl(r). Orien-
tation and spatial frequency filters were boxcar functions. Orientation
filters uniformly tiled orientation space, with the k-th filter centered on

orientation �k � k
180°

12
. Spatial filters uniformly tiled the spatial fre-

quency range between 0 and the Nyquist frequency fNyq. Each double-
boxcar Fourier filter was smoothed with a Gaussian kernel (SD: 20 pixels)
to prevent ringing artifacts in the filtered image.

This procedure separated the image into 36 Fourier components,
each of which was then transformed back into the image domain. For
each spatial scale l, image pixel j, and time point t, this yields a vector
z�l, j,t� � 	z1

�l, j,t�, z2
�l, j,t�, . . . , z12

�l, j,t�
, of 12 values describing the local
energy in each orientation band. These orientation intensities were aver-
aged in circular space to obtain a complex vector pointing toward their
average orientation:

m�l, j,t� �
1

�kzk
�l, j,t�2 �

k
zk

�l, j,t�2 exp�i
��k

180� (7)

where i is the imaginary unit. The angle of this vector served as a measure-
ment of the average orientation � (l ,j ,t ) at spatial scale l, location j, and time t,
while its length � (l ,j ,t ) quantified how tightly the orientation content was
concentrated around this mean (such that higher values indicated a more
pronounced orientation signal). Thus, for each video frame and spatial scale,
this analysis yields a map that describes for each pixel its average orientation
and orientation strength.

After characterizing the orientation content of each video frame, we
measured its evolution over time, separately for each spatial scale. First,
all pairs of video frames {t1,t2} were selected that were separated by a
given time interval. To exclude noise, we then selected, for each pair of
frames, all pixels with strong orientation content across both time points
(frames). This was defined as those pixels for which the product
��l, j,t1� ��l, j,t2� was in the top 50% of that particular pair of frames. For each
of these pixels, we recorded their orientations ��l, j,t1� and ��l, j,t2� at the
lagging and leading frames, respectively, and added these values to a
histogram, characterizing the joint probability distribution of current
and previous orientations for a given image location and spatial scale.
One such histogram was obtained for every video, and a mean
histogram was computed across all videos in each database. Finally,
this 2D joint distribution p�s�t2�, s�t1�� of current and preceding orienta-
tions was converted to a one-dimensional transition kernel. First, we
conditioned the distribution on the preceding orientation, by computing

p�s�t2��s�t1�� �
p�s�t2�, s�t1��

p�s�t1��
, where p�s�t1�� � �s�t2� p�s�t2�, s�t1��. The joint

distribution describes the overall probability that one orientation is fol-
lowed by another, while the conditional distribution expresses the prob-
ability of the second orientation given a certain value of the first. We then
collapsed this conditional distribution onto a single dimension, by re-
casting it in terms of the difference in orientation between s�t2� and s�t1�.
This results in a transition distribution, summarizing the probability that
an orientation will change by a certain amount in a given timespan,
regardless of the initial orientation. Transition distributions were
estimated separately for each spatial scale, and for a range of time
intervals (200, 1000, and 10,000 ms).

As can be seen in Figure 2, the distributions resulting from this analysis
tended toward the same general shape regardless of temporal window,
spatial scale, or database: a central peak, comprising orientation changes
of limited range, combined with a uniform component reflecting ran-

dom changes in orientation. The specific parameters of this shape vary
somewhat between videos and scales. The distribution tends to be wider,
with a stronger uniform component, for smaller compared with larger
spatial scales, and also for longer compared with shorter temporal inter-
vals. This makes sense, as larger changes are likely to occur over longer
timespans, and orientation content for high spatial frequencies is likely to
change more quickly. On average, orientation varies also more quickly
and randomly over space and time in the cat database, which may be
explained by the abundant camera motion in these videos, compared
with the mostly static viewpoints in the city database. Across databases
and scales, the excess kurtosis of the distributions varied from �0.3 (i.e.,
approximately Gaussian) to 5.8, the circular SD of the central peak
ranged from 12.4° to 33.5°, and the contribution of the uniform compo-
nent varied between 24% and 94% (comparable to psame � 0.06 – 0.76).

Following these natural temporal statistics, the orientation transition
kernel in the naturalistic observer model (discussed in the following
section) was similarly described as a mixture between a central peak and
uniform component. The parameter values of this mixture distribution
(i.e., the width of the peak, its kurtosis, and the contribution of the
uniform component) were fit to the behavioral data, as natural transition
distributions were found to vary in these dimensions across analysis
settings (see above) and it is a priori unclear which specific values would
best describe the visual environment of the fMRI experiment.

Ideal observer model. Theoretical predictions were quantified using an
ideal observer approach. Specifically, the observer model started with the
assumption that the observer takes a sensory measurement from the
environment at time t. The measurement is noisy: there is no one-to-one
mapping between the external stimulus (s (t )) and internal measurement
(m (t )). Rather, the relationship between stimulus and measurement is
described by a probability distribution p(m (t )�s (t )). The observer’s task is
to infer which stimulus (orientation) is presented. The ideal observer
uses the generative model, that is, p(m (t )�s (t )), to determine which stim-
ulus most likely caused the sensory measurement. Specifically, the ob-
server inverts the generative model, reasoning backwards from the
internal measurement to likely causes, using Bayes’ rule:

p�s�t��m�t�� � p�m�t��s�t�� (8)

The resulting posterior distribution describes, for every possible stimulus
orientation, the probability that it caused the internal measurement. The
peak of the distribution defines the most likely stimulus, while the distri-
bution’s width (or variance) can be taken as a measure of the degree of
uncertainty in this orientation estimate. Representing knowledge proba-
bilistically is advantageous because it enables the observer to express the
reliability of their sensory measurements, and use this information in
further computations.

We continue with the notion that the natural environment is fairly
stable over time (Dong and Atick, 1995). Specifically, we analyzed the
temporal orientation statistics in a large range of natural videos (see
above) and found that natural changes in orientation over small periods
of time are well approximated by a mixture distribution of a central peak
and a uniform baseline (Fig. 2):

p�s�t��s�t�1�� � psame C�s�t�1�, �, �� � �1 � psame�U�0, 180)

(9)

C�s�t�1�, �, �� �
1

Z
exp�� 1

2�s
2	angle�s�t�, s�t�1��	�� (10)

where Z is a normalization constant that was computed numerically.
This transition distribution describes the probability that a stimulus at
time t has orientation s (t ), given that the previous stimulus had orienta-
tion s (t � 1). The distribution consists of two components. The first com-
ponent, a central peak, models stability in the environment, and is
centered on no change. The width and kurtosis of this central peak are
controlled by parameters �s and �, respectively. When � � 2, the distri-
bution is Gaussian and the width parameter �s corresponds to the SD of
the central peak. For other values of �, the width parameter is not easily
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interpretable, which is why we report numerically computed values of
the distribution’s SD and kurtosis in most of our analyses.

The second component in the mixture, a uniform distribution, ac-
counts for the fact that sometimes (with probability 1 � psame) observers
do encounter sudden and unpredictable changes in the environment
(e.g., a previously seen bird has flown away). This component describes
prior knowledge about the probability of orientation stimuli, regardless
of stimulus history. For simplicity, we assume the prior to be uniform,
but it could easily be replaced by, for instance, a distribution favoring
cardinal orientations (Girshick et al., 2011) without affecting our general
conclusions.

In a stable environment (as we assume here), it is advantageous for the
observer to form predictions about the stimulus based on previous sen-
sory measurements. Combining predictions with information from the
current measurement tends to produce more accurate stimulus estimates
than those based on current sensory information alone. To compute a
prediction, p�s�t��m�t0:t�1��), the ideal observer uses knowledge about the
statistical structure of the environment, and combines this statistical
knowledge with information obtained from previous observations as
follows:

p�s�t��m�t0:t�1�� � � p�s�t��s�t�1�� p�s�t�1��m�t0:t�1�� ds�t�1� (11)

Thus, the prediction is obtained by convolving the distribution of knowl-
edge about the previous stimulus �p�s�t�1��m�t0:t�1��, with the distribution
of changes that can occur between two consecutive measurements
�p�s�t��s�t�1���. Because of the recursive nature of the ideal decision pro-
cess, the distribution over previous stimuli (indirectly) reflects all of the
information acquired since time t0, the starting point of the inference
process.

The ideal observer combines this prediction with knowledge deduced
from the current sensory measurement, resulting in a new distribution:

p�s�t��m�0:t�� � p�s�t��m�t�� p�s�t��m�0:t�1�� (12)

This final distribution represents the observer’s belief, expressed as prob-
abilities, about the orientation of the currently viewed stimulus. This
belief is based on all the information available to the observer at time t,
including information obtained from both current and previous sensory

observations. We assume that the observer reports the mean of this dis-
tribution as their best estimate of the viewed stimulus orientation. In the
following, we refer to this observer model as the “naturalistic” observer.

Simulations. Behavioral orientation estimates of the naturalistic ob-
server were obtained using a sequence of 10,000 orientation stimuli with
naturalistic temporal statistics. Specifically, for each simulated trial t, a
stimulus orientation s (t ) was randomly drawn from Equation 9, with
psame � 0.9, �s � 10, and � � 2, except for the initial stimulus at t � t0,
which was drawn from a uniform distribution between 0° and 180°. Each
stimulus orientation s (t ) evokes a noisy sensory measurement. Specifi-
cally, the sensory measurement on trial t was drawn at random from a
circular Gaussian (the sensory measurement distribution p�m�t��s�t��)
centered on the true stimulus orientation s (t ):

p�m�t��s�t�� �
1

Z
exp� �

1

2�2 angle�m�t�, s�t��2� (13)

where Z is a normalization constant that was computed numerically, and
� 2 is the variance of the sensory noise. Thus, the sensory measurement
for a given orientation s (t ) fluctuates across trials due to noise. The noise
parameter of the distribution varied between weak and strong levels of
noise: on a random 50% of trials, the measurement distribution had a SD
of � � 5° (weak sensory noise); whereas on the remaining trials, this was
10° (strong sensory noise). Probabilistic inference of the most likely stim-
ulus orientation on each trial proceeded with full knowledge of parame-
ter values and according to the algorithm laid out in Equations 8 –12,
except that on the first trial (t � t0), there was no prediction available
from a preceding trial.

We compared naturalistic observer performance with the simulated
behavioral orientation estimates of three alternative observers. Each of
these observers lacked a component of the ideal inference process. The
first observer ignored past sensory responses altogether. This observer
was simulated by skipping the prediction step in the ideal observer algo-
rithm, such that the observer’s perceptual knowledge reflected only the
sensory input on the current trial. The second observer ignored trial-by-
trial fluctuations in sensory uncertainty. This observer (incorrectly) as-
sumed that the sensory posterior p�s�t��m�t�� had a constant width of 7.9°
on each trial (the optimal uncertainty in this scenario for an observer
assuming constant uncertainty). The third alternative observer used in-
correct assumptions about the temporal orientation statistics of the en-
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Figure 2. Distribution of orientation change over time in natural videos. Two databases of natural videos, which we refer to as cat and city (Kayser et al., 2003; Betsch et al., 2004; Dorr et al., 2010),
were analyzed for their orientation content as it evolved over time. Each video database was analyzed at three different spatial scales (lower, middle, and upper third of the spatial frequency
spectrum) and for three different temporal intervals (200, 1000, and 10,000 ms). Panels represent the orientation transition distribution measured in the two databases for different temporal
intervals (averaged across spatial scales) and spatial scales (averaged across temporal intervals), as well as the overall mean across all spatial and temporal scales and both databases. The general
shape observed across all analysis settings is that of a flat baseline with a central peak, which in the naturalistic observer model was approximated by a mixture distribution of a central peak and a
uniform baseline.
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vironment. While temporal correlations were determined by psame � 0.9
in the simulated natural environment, this observer instead assumed a
value of psame � 1. Effectively, this model observer ignored the difference
in orientation between consecutive observations, and simply averaged
the two while taking into account their uncertainty. We refer to these
three nonideal observers as the “naive,” “uncertainty-blind,” and “tem-
porally misinformed” observers, respectively.

To examine the simulated observer’s behavior under experimental (i.e., non-
naturalistic)conditions,werepeatedthesimulationproceduresdescribedabove,
but with stimuli randomly drawn from a uniform distribution independent
across time (this is equivalent to setting psame � 0 in Eq. 9).

Model fits. To ascertain the extent to which the computational models
captured human behavior, parameter values were fitted to the serial de-
pendence biases in participant behavior across the full range of orienta-
tion angles. For the first analysis, the models were fit to the participants’
group-average serial dependence curves across trials, assuming a con-
stant level of sensory uncertainty (posterior width � �constant) across
trials. This was a free parameter in the model, in addition to three param-
eters used to model temporal predictions, psame, �s, and �. The effect that
each of these free parameters has on the shape of the modeled serial
dependence curve is illustrated in Figure 3. To ensure plausible parame-
ters values given their interpretation, these four parameters were con-
strained to 1 � �constant � 60, 0 � psame � 1, �s  0, and �  0.8. For the
temporally misinformed observer, parameters were fixed to psame � 1
and � � 2. The fitting procedure entailed finding the values that opti-
mally explained human behavior within these ranges. For reasons of
clarity, none of the observer models included parameters for additional

sources of noise (e.g., motor noise), as including these would have no
effect on the magnitude or shape of the serial dependence curve.

A crucial prediction of the naturalistic observer model is that the
strength of the serial dependence effect should depend on the difference
in sensory uncertainty between the current and previous trial. In a second
analysis, we therefore divided each participant’s trials into two bins. The
first bin contained trials for which uncertainty (decoded from cortical
activity) was higher on the current than previous trial (high ¡ low un-
certainty), whereas the second bin consisted of trials for which uncer-
tainty was higher on the previous than current trial (low ¡ high
uncertainty). We tested the degree to which uncertainty played a role in
participant decisions by comparing how well their behavior was captured
by two different observer models. The first observer model assumed a
fixed level of uncertainty across trials (see also above), thus ignoring
trial-to-trial fluctuations in the reliability of their sensory evidence. The
second simulated observer accounted for across-trial variability in un-
certainty when making decisions, by weighting each piece of evidence by
its reliability. This model was fit to the data by assuming two bins or levels
of uncertainty (�low and �high), both bounded between 1° and 60°, and
further constrained such that �low � �high.

To fit these models, the sum of squared residuals between predicted
and observed serial dependence curves was minimized numerically, us-
ing MATLAB’s lsqcurvefit algorithm. The goodness-of-fit of the model
and parameter values was evaluated by computing the coefficient of de-
termination (R 2). The circular SD and kurtosis of the central peak of the
fitted transition distributions were computed numerically to facilitate
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Figure 3. Effect of parameter values on modeled serial dependence bias. Model behavior was simulated using various parameter values to illustrate the range of serial dependence curves
predicted by each of the observer models. Panels represent the magnitude of the error on the current trial as a function of the absolute difference in orientation between current and previous stimuli.
Positive bias values reflect errors toward the previously presented stimulus, and data are the mean error across trials. Biases are shown for the naturalistic and temporally misinformed observers. By
definition, the serial dependence bias of the naive observer is zero, regardless of orientation angle, and is not shown here. When averaged across uncertainty levels, the bias curve of the naturalistic
observer is virtually identical to that of the uncertainty-blind observer (see Fig. 5b), which is why the latter is not shown here. Trial-by-trial fluctuations in uncertainty change the magnitude, but not
the shape, of the bias curve (see Fig. 5c). Parameter values were manipulated around default settings of �avg � 8°, psame � 0.5, �s � 10°, and � � 2. In each plot, the medium gray curve
corresponds to these default parameters and is identical between panels (for the same observer). Parameters psame and � are not free parameters in the temporally misinformed observer model and
were not manipulated there. For the temporally misinformed observer, the serial dependence bias only equals 0 when orientations differ by exactly 90°; whereas for the naturalistic model observer,
the no-bias point can be reached much earlier, depending on parameter values. This is because the temporally misinformed observer invariably averages together previous and current sensory
observations, regardless of their orientation difference. Consequently, the serial bias of this observer is only 0 when the circular average of these orientations is 0 (i.e., when orientations are
orthogonal). The different values of � correspond to excess kurtoses of 3 (Laplacian), 0 (Gaussian), and �0.8 (sub-Gaussian), for � � 1, 2, and 4, respectively. For the default setting of � � 2, �s

corresponds to the standard deviation (SD) of the central peak in the transition model. When � is set to different values, however, this changes both the kurtosis and SD of the central peak. To
illustrate the specific effect of changing kurtosis, �s was therefore adjusted along with � to keep the SD fixed at an approximately constant value of 10°. As evident from the resulting plots, changing
the kurtosis of the central peak does not strongly affect the shape of the serial dependence curve. This is because the transition distribution is convolved with an (approximately) Gaussian distribution
(reflecting the observer’s knowledge about the previous stimulus), which smoothens the central peak. The result of this convolution is the observer’s prediction, which, for a reasonable range of
kurtosis values of the transition distribution, always tends toward a Gaussian shape.
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direct comparison between the fitted distributions and those estimated
from natural videos (Fig. 2).

Statistical analysis. To determine whether the orientation reports of
the human participants displayed a statistically significant serial depen-
dence bias, and to appropriately account for the dependencies between
data points introduced by smoothing, we used a cluster-based permuta-
tion test modeled after Maris and Oostenveld (2007). First, we defined
the largest cluster of orientation differences with a positive serial depen-
dence bias in the group average of the behavioral data. This cluster was
found to lie between orientation differences of 1°-57°. We then com-
puted t statistics for the bias at each orientation difference in the cluster.
This was computed as the mean behavioral error across participants for
that orientation difference, divided by the corresponding SE. The size of
the cluster was then quantified using the cumulative t statistic, calculated
as the sum of t statistics across the cluster’s data points. To assess statis-
tical significance, we compared its size with the cluster sizes in a simu-
lated null distribution of datasets. This null distribution was generated by
randomly permuting the observed data 10,000 times. Each permutation
was computed by inverting the sign of a random portion of behavioral
errors for each participant (a standard approach for a one-sample per-
mutation test against the null hypothesis that the data have zero mean).
The permuted data were smoothed and averaged across participants,
following the same procedures as applied to the observed data. The larg-
est cluster with a positive serial dependence bias was then determined in
this permuted group average, and its size (cumulative t statistic) was
recorded. The p value for the cluster found in the observed data was
calculated as the proportion of clusters selected from the permuted da-
tasets that were larger than the observed cluster size. This corresponds to
a test of the one-sided null hypothesis that a positive serial dependence
bias of the size observed in the participants’ behavior could have arisen by
chance.

To investigate whether the strength of the serial dependence bias de-
pended on the level of sensory uncertainty in cortex, we selected those
orientation differences for which participant behavior exhibited a signif-
icant serial dependence bias (i.e., 1°-57°), and divided these data (inde-
pendently for each observer) into two bins. The first bin contained trials
for which uncertainty (decoded from cortical activity) was higher on the
current than previous trial, and the second bin consisted of trials for
which decoded uncertainty was higher on the previous than current trial.
Bias magnitude was calculated for an identical distribution of orientation
differences in each of the two bins and then averaged across observers. To
assess significance, individual-observer biases were averaged across ori-
entation differences, and a paired t test was used to determine whether
there was a significance difference between the two bins.

To determine whether the naturalistic and temporally misinformed
observer models explained a statistically significant degree of variance in
the participants’ group-average behavior, we used permutation tests. To
assess the degree to which the observer model significantly captured
serial dependence biases per se, we compared its observed goodness-of-
fit (R 2) to a null distribution of R 2 values. This null distribution was
generated from 10,000 random permutations of the observed data. Each
permutation was computed by randomly shuffling the errors in the par-
ticipants’ orientation reports with respect to the trial labels (i.e., the
difference in stimulus orientation between consecutive trials). This sim-
ulates the null hypothesis that the behavioral errors arose from a distri-
bution with constant mean, rather than one that depended on the
orientation difference between trials (i.e., the behavioral bias does not
depend on the difference in orientation between consecutive trials under
the null hypothesis). For each permuted dataset, a smoothed and group-
averaged serial dependence curve was computed. This curve was then fit
with the observer model, and the R 2 value of this fit was recorded. The p
value of the observed R 2 was computed as the proportion of permuta-
tions for which the R 2 value was larger than the observed R 2. This cor-
responds to a test of the null hypothesis that the model provides a good fit
of the serial dependence curve by chance.

A similar procedure was used to determine whether a naturalistic ob-
server model accounting for trial-by-trial fluctuations in sensory uncer-
tainty better captured the data than one that ignored these fluctuations
and instead assumed one level of uncertainty in its decisions. Data were

sorted into two bins, based on the trial-by-trial uncertainty levels esti-
mated from the fMRI activity patterns (see also above). The first bin
contained trials for which uncertainty was higher on the current than
previous trial, and the second bin consisted of trials for which uncertainty
was lower on the current than previous trial. The null distribution for this
analysis was simulated by redividing trials into two equal-sized bins at
random (rather than based on uncertainty), for each of 10,000 random-
izations. For each permuted dataset, a smoothed and group-averaged
serial dependence curve was computed. The two models were then fitted
to the permuted and the observed data, and their difference in R 2 was
recorded for each dataset. The p value for the improvement in fit due to
modeling fluctuations in uncertainty was computed as the proportion of
R 2 differences obtained from the permuted datasets that were larger than
the observed change in R 2 value. This corresponds to a test of the null
hypothesis that the observed improvement in R 2 for the uncertainty-
based model arose by chance. The permutation test automatically cor-
rects for increases in model complexity, as the comparison is between
permuted and observed data, and any advantage due to added degrees of
freedom applies to both sets of data.

Code availability. Custom code written in MATLAB will be made avail-
able upon request.

Results
The ideal observer
How best to make sensory inferences in an environment that is
largely stable across time? We will first examine ideal observer
behavior, and later compare the predictions from this normative
model to the behavior of human observers. We focus on a task in
which the observer estimates from noisy sensory inputs the ori-
entation of simple stimuli that are presented in sequence. Two
basic principles underlie the computations by which the ideal
observer performs this task. First, the ideal observer has knowl-
edge about the temporal correlations between successive stimuli
in the environment (Fig. 2). This enables the observer to predict
the upcoming stimulus, based on perceptual estimates of previ-
ous stimuli. Second, the ideal observer realizes that sensory infor-
mation is uncertain: because sensory inputs are noisy, each
measurement is consistent with a range of possible perceptual
interpretations. Utilizing knowledge about uncertainty enables
the observer to make more accurate decisions, by prioritizing
sensory information that is more certain.

These two normative principles give rise to an optimal decision-
making algorithm, illustrated in Figure 4 (and discussed in more
detail in the Materials and Methods). At the start of the decision-
making process, the observer has some sensory knowledge about the
most recently viewed orientation. To capture the degree of uncer-
tainty in this knowledge, the observer represents this information as
a probability distribution over all possible stimulus orientations. The
wider this distribution, the larger is the range of orientations consis-
tent with the sensory input, and thus the greater is the degree of
uncertainty that the observer has about the inputs. This probability
distribution is combined with an internal model of the temporal
orientation statistics of the environment. This enables the observer
to generate a prediction about which orientation the stimulus is
likely to have next. The prediction is also represented by a probability
distribution. The observer subsequently takes another sensory mea-
surement, which provides additional information about stimulus
orientation. This sensory information is combined with the observ-
er’s prediction, arriving at a final probability distribution that opti-
mally reflects all the available information about the current
stimulus from both past and present sensory inputs. The observer
reports the mean of this distribution as their estimate of the current
stimulus orientation.

To illustrate ideal observer behavior and the role of these var-
ious sources of knowledge, we simulated the observer’s responses
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to naturalistic sequences of oriented stimuli. Specifically, we used
sequences of stimuli that followed naturalistic temporal statistics,
measured using data obtained from real-world movies (Fig. 2).
We quantified the model observer’s performance as the average
error in its orientation estimates, and compared this with the
performance of three alternative model observers. Each of
these observers was deficient in an important aspect of the ideal
inference process. The first deficient observer ignored previous
sensory inputs altogether, relying only on recent sensory infor-
mation. The second deficient model observer ignored moment-
to-moment changes in sensory uncertainty, whereas the third
used an incorrect model of the temporal statistics of the environ-
ment by automatically integrating consecutive observations re-
gardless of the change in orientation. We refer to these three as
the “naive,” “uncertainty-blind,” and “temporally misinformed”
observer, respectively. Comparing between the four model ob-
servers showed that none of the deficient observers matched the
performance of the ideal (naturalistic) observer (Fig. 5a). This
showcases the behavioral advantage of combining sensory esti-
mates, as long as the integration process uses accurate knowledge
of sensory uncertainty and environmental statistics.

Bringing the simulations closer to the actual conditions in
which human observers were tested, we next examined the model

observer’s behavior for sequences consisting of random orienta-
tion stimuli. Following previous work (Girshick et al., 2011; Fi-
scher and Whitney, 2014), we assume that the naturalistic
observer automatically applies knowledge about natural tempo-
ral statistics in their decisions, even when this internal world
model provides no information about future inputs at all. While
this strategy is certainly suboptimal in many experimental set-
tings, it comes with substantial functional benefits in the gener-
ally stable, natural environment (Fig. 5a). The mismatch between
actual experimental statistics and those assumed by the natural-
istic observer created a substantial drop in behavioral accuracy
(mean absolute error rose from 5.8° to 8.5°). Interestingly, we
also observed a very distinctive pattern of behavioral errors that
directly resulted from the observer’s sensory integration strategy.
First, because the naturalistic observer operates under the as-
sumption that consecutive inputs tend to arise from the same
stimulus, behavioral orientation estimates were biased toward
previously seen stimuli (Fig. 5b). Second, because the naturalistic
observer uses knowledge about natural temporal dynamics, this
bias peaks at relatively small stimulus differences (Fig. 5b). Third,
because the naturalistic observer weights sensory inputs by their
uncertainty, the temporal prediction has a stronger influence
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Figure 4. Ideal observer in the natural environment. Illustration represents a single iteration in a continuous perceptual inference cycle. Left column represents the degree to which the
environment remains stable over time, described by the transition model (light blue). For instance, edges in the environment (e.g., the one marked in orange) typically do not change much from one
moment to the next. The ideal observer uses knowledge of these transition probabilities to infer the stimulus from its noisy sensory inputs. Specifically, at time t � 0, the observer takes a sensory
measurement m (0) of the stimulus s (0) (an oriented edge). The measurement carries information about the stimulus, which is expressed by the probability distribution p�s�0��m�0�� (yellow). This
distribution is subsequently combined with a prediction (pink), which is based on previous sensory observations combined with knowledge of the environment’s temporal statistics. The prediction
is expressed by a probability distribution p�s�0��m�t0:�1��, where t0 denotes the starting point of the inference process that is arbitrarily long ago. The prediction is integrated with incoming sensory
information to arrive at a combined distribution p�s�0��m�t0:0�� (red), which reflects all sources of knowledge available to the observer at t � 0. Finally, the observer uses this perceptual knowledge
available at time 0 to generate a new prediction p�s�1��m�t0:0�� (purple) about the next stimulus at time t � 1, and the cycle continues.
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when current sensory information is comparatively unreliable.
Consequently, the magnitude of the serial dependence effect is
larger when a high-uncertainty trial follows a low-uncertainty
trial (low ¡ high uncertainty), compared with trials where
uncertainty was greater on the previous trial (high ¡ low
uncertainty) (Fig. 5c). With these three predictions in hand,
we now turn to human behavior to both test these predictions
and, in doing so, probe the cortical representation of sensory
uncertainty.

Human observers
Do human observers integrate sensory evidence over time, while
using knowledge of natural temporal statistics and sensory un-
certainty? To address this question, 18 participants performed an
orientation estimation task while their brain activity was re-
corded with fMRI. Orientation stimuli were presented in random
sequence, and observers reported the orientation of each stimu-
lus by rotating a bar presented at fixation. We compared human
behavior against that of a model observer who assumes natural-

istic statistical structure in the task. Specifically, we tested three
predictions: (1) behavioral orientation estimates should be bi-
ased toward previously seen stimuli; (2) this bias should have a
specific shape that reflects the temporal orientation statistics of
the natural environment, peaking at small orientation differenc-
es; and (3) the magnitude of the bias should depend on the com-
parative reliability of current and previous sensory information.

To test for serial dependence in behavior, we compared the
orientation reported on the current trial with that of the preced-
ing trial. This comparison revealed that behavioral estimates were
biased toward the orientation of the previous stimulus (cluster-
based permutation test: p � 0.017; Fig. 6a,b), as predicted by the
naturalistic observer model and observed in previous studies
(e.g., Fischer and Whitney, 2014; Fritsche et al., 2017). To further
quantify the effect, the naturalistic observer model was fit to par-
ticipant behavior (see Materials and Methods). The model ex-
plained substantial and significant variance, suggesting that it
captured relevant aspects of human behavior (R 2 � 0.86,

p � 0.02; parameter estimates: psamê � 0.64, uloŵ � uhigĥ
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Figure 5. Simulated behavior of various observer models in an orientation estimation task. a, Error standard deviation (SD) in orientation estimates for each of four model observers on sequences
of orientation stimuli that were generated using naturalistic temporal statistics (i.e., correlations over time). The ideal or naturalistic observer uses knowledge of temporal stimulus statistics while
taking into account the uncertainty associated with successive stimulus estimates. The uncertainty-blind observer similarly combines previous and current sensory estimates but fails to weight each
by its associated uncertainty. The naive observer bases estimates solely on sensory input from the current trial. The temporally misinformed observer takes into account uncertainty but assumes an
incorrect model of temporal statistics. The naturalistic observer outperforms the other three model observers that each ignore important aspects of the optimal inference process. Error bars indicate
bootstrapped 95% confidence intervals. b, When presented with stimuli that are uncorrelated over time, the naturalistic observer incorrectly assumes temporal dependencies, and as a result, gives
estimates that are biased toward previously seen stimuli (green). The same is true for the uncertainty-blind observer (orange), whose biases are nearly identical to those of the naturalistic observer
(when averaged across uncertainty levels, as in this plot). This is in contrast to an observer model that assumes uncorrelated stimuli (the naive observer); the estimates of this observer model exhibit
no biases at all (pink). The temporally misinformed observer, on the other hand, does produce biased estimates but combines current and previous estimates regardless of their difference in
orientation (blue). For a detailed analysis of model parameters and their effects on predicted behavior, see Materials and Methods. Plotted is the predicted bias in the orientation estimates of the
model observer as a function of the orientation of the previous relative to the current stimulus (acute-angle difference between previous and current orientation). For both axes, positive angles are
in a clockwise direction. c, For the uncertainty-aware naturalistic model observer, the bias is stronger when the observer is less uncertain about the previously seen stimulus than the current stimulus
(dark green), than when the current sensory information was most reliable in comparison (light green). For the uncertainty-blind observer, the bias is identical across levels of uncertainty (brown
and yellow). Plotted is the predicted bias as a function of the absolute orientation difference between current and previous trial. Positive bias values reflect errors toward the previous trial’s
orientation.
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� 4.4�, width (SD) and kurtosis of central peak in transition
model: 16.9° and 2.6°, respectively). These results were similar
when serial dependence biases were computed with respect to the
reported, rather than the presented, orientation on the preceding
trial, with a reliable bias over the same range of orientation dif-
ferences (cluster-based permutation test: p � 0.002) that was well
captured by the naturalistic observer model (R 2 � 0.82, permu-
tation test: p � 0.03). This suggests that human observers capi-
talize on the stability of the natural environment, by integrating
current with previous sensory observations.

To test the degree to which knowledge of natural temporal
statistics is necessary to capture the behavioral effect, we next
compared human behavior against an observer model that
operated under the naive assumption that consecutive sensory
observations always arise from a common source. Given this as-
sumption, the optimal integration strategy is to simply average
uncertainty-weighted sensory observations over time, with no
regard to their orientation difference (as implemented by the
temporally misinformed observer model). Human observers ap-

pear to compute such linear averages in many other sensory in-
tegration contexts (Ernst and Banks, 2002; Knill and Saunders,
2003; Alais and Burr, 2004). Interestingly, the temporally misin-
formed observer model failed to appropriately capture the shape
of the serial dependence curve (R 2 � 0.02, p � 0.41; Fig. 6b):
while this model predicts a stronger bias the larger is the orienta-
tion difference between current and previous observations, serial
dependence effects in participant behavior reached a maximum
at relatively small orientation differences, a pattern that was well
captured by the naturalistic observer model (see above). This
suggests that human observers do not merely average sensory
observations, but rather use an internal model of natural tempo-
ral statistics to determine how successive sensory inputs are best
combined.

Finally, we examined whether human behavior is consistent
with a Bayesian sensory integration strategy that takes into con-
sideration sensory uncertainty. We reasoned that, if uncertainty
is represented in cortical stimulus representations and used in
decisions, then this cortical representation of uncertainty should
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Figure 6. Human behavior matches the predictions of the naturalistic observer model. a, Group-average behavioral errors, smoothed with a moving average filter, as a function of the relative
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SEM across observers. b, Same as in a, but with behavioral errors realigned such that positive deviations are in the direction of the orientation presented on the previous trial, and plotted against the
absolute, rather than the signed, difference in orientations. Arrows indicate the extent of orientation differences for which a cluster-based analysis revealed a significant bias in the direction of the
previous trial ( p � 0.017). A small negative serial dependence bias is also apparent for orientation angles �60° but did not reach statistical significance ( p � 0.079, cluster-based permutation
test). Green curve indicates the optimal fit of the naturalistic ideal observer model to the behavioral data. This model explains significant variance in the data (R 2 � 0.86, p � 0.02). Blue curve
indicates the optimal fit of an alternative observer model ignoring natural temporal statistics. The bias curve generated by this model is very different in shape from that observed in human behavior,
and does not capture the human data well (R 2 � 0.02, p � 0.41). c, Similar to the naturalistic observer, the serial dependence bias in human behavior is stronger when the sensory representation
is more uncertain on the current than previous trial (dark green), compared with when sensory information is less uncertain now than in the recent past (light green; t(17) � 2.96, p � 0.009). Dashed
curves indicate the optimal fit of the naturalistic observer (green) and uncertainty-blind observer models (orange). The naturalistic observer model explained significantly more variance than a
model ignoring fluctuations in uncertainty (R 2 increase from 0.65 to 0.78, p � 0.01), suggesting that, like the naturalistic observer model, human observers integrate current and previous sensory
inputs in an uncertainty-weighted manner.
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be predictive of trial-by-trial changes in the magnitude of the
behavioral serial dependence bias. To characterize the degree of
sensory uncertainty associated with cortical stimulus representa-
tions in areas V1-V3, we used a recently developed probabilistic
decoding algorithm (van Bergen et al., 2015; van Bergen and
Jehee, 2018) that calculates for each trial of cortical activity a
posterior probability distribution over stimulus orientation. The
width of this distribution can be taken as a metric of the amount
of uncertainty contained in cortical activity. For each observer,
trials were divided into two bins: one bin with trials for which the
decoded cortical uncertainty was higher on the current compared
with the previous trial (low¡ high uncertainty) and a second bin
for which the width of the decoded probability distribution was
narrower on the current compared with the previous trial (high
¡ low uncertainty). As no external noise was added to the stim-
uli, binning was based solely on the degree of uncertainty in
cortical activity patterns. We compared between behavioral bi-
ases for each of the two bins, predicting that their strength should
change if observers used the degree of uncertainty associated with
each of the two cortical stimulus representations.

Does the magnitude of the behavioral serial dependence bias
depend on the reliability of the observer’s internal sensory evi-
dence? Interestingly, behavioral orientation reports tended to be
more biased toward the recent past when previous information in
visual cortex was more reliable (t(17) � 2.96, p � 0.009; Fig.
6c), suggesting that human observers take into account the
uncertainty in their cortical representations. Fitting the natu-
ralistic observer model to the data, and comparing with the
uncertainty-blind observer model, similarly showed that hu-
man behavior was better explained with a model that takes
trial-by-trial fluctuations in uncertainty into account (signif-
icant increase in R 2, from 0.65 to 0.78; permutation test on the
difference in R 2: p � 0.01; parameter estimates for the natu-

ralistic observer: psamê � 0.59, uloŵ � 3.5�, uhigĥ � 5.4�, width
(SD) and kurtosis of central peak in transition model: 17.3° and
2.6°, respectively). The results were qualitatively similar when
serial dependence biases were computed with respect to the re-
ported, rather than presented, orientation on the preceding trial:
as before, behavioral biases were reliably stronger when decoded
uncertainty was higher on the current compared with the pre-
ceding trial (paired t test: t(17) � 2.47, p � 0.024), and the
naturalistic observer model explained more variance in behav-
ior than the uncertainty-blind observer model (naturalistic ob-
server: R 2 � 0.76, uncertainty-blind observer: R 2 � 0.63,
permutation test on the difference in R 2: p � 0.001). Together,
these results suggest that human observers not only capitalize on
the temporal continuity of the natural word by integrating sen-
sory information across time, but also weight each piece of tem-
poral evidence by its uncertainty. Moreover, it appears that the
uncertainty that observers use in their perceptual decisions is
directly linked to the cortical representation of the stimulus itself,
providing critical evidence for probabilistic theories of neural
coding (Zemel et al., 1998; Hoyer and Hyvärinen, 2003; Jazayeri
and Movshon, 2006; Ma et al., 2006; Fiser et al., 2010).

Discussion
How does the brain represent the reliability of its sensory evi-
dence? Here, we tested an assumption central to Bayesian models
of neural coding: that information is represented in cortical ac-
tivity as a probability distribution, the width of which reflects the
observer’s uncertainty. In testing these theories, we capitalized on
a well-known behavioral bias called serial dependence, demon-
strating that serial dependence in behavior is consistent with a

statistical inference process that takes advantage of a temporally
predictable natural environment. The modeling work resulted in
quantitative predictions regarding sensory uncertainty that we
tested with fMRI and a probabilistic decoding analysis. Our fMRI
findings directly corroborate Bayesian theories by showing that
the fidelity of a cortical stimulus representation, extracted as
the width of a probability distribution, is linked to perceptual
decisions. This suggests that sensory uncertainty is not only rep-
resented in visual activation patterns, but also read out by down-
stream areas to improve perceptual decision-making.

Earlier work on the cortical code for uncertainty (van Bergen
et al., 2015) relied on a poorly understood behavioral bias with
ill-defined links to uncertainty, leaving room for alternative ex-
planations. This earlier work focused on a repulsive bias away
from the cardinal axes; however, it is currently unclear how this
cardinal repulsion bias might benefit the observer as an inference
or decision strategy. In contrast, the serial dependence effect
studied here better lends itself for an explanation based on nor-
mative principles, given the availability of real-world videos to
characterize the temporal statistics of the natural environment.
The here-discussed model implements a Bayesian recursive esti-
mation strategy, whereby sensory estimates are continuously up-
dated based on both knowledge of natural temporal orientation
statistics and an uncertainty-weighted combination of current
and previous observations to make the best possible decisions.
The close match between model and human behavior suggests
that serial dependence in perception (Fischer and Whitney, 2014)
can be understood in relation to the features of such a recursive
estimation process, and provides strong support for the hypoth-
esis that the imprecision in a cortical stimulus representation
reflects Bayesian uncertainty or probability.

Previous work on Bayesian inference has used external
sources of noise, such as stimulus blur or contrast, to manipulate
uncertainty. This is problematic because it could be that observ-
ers simply monitor such image properties as external cues to
uncertainty. Compounding the issue, variations in physical stim-
ulus properties typically affect cortical activity, making it impos-
sible to discern whether cortical responses reflect a change in
sensory uncertainty per se or rather one in stimulus features. For
this reason, we held physical stimulus properties constant and relied
on internal fluctuations in activity to make perceptual information
more or less reliable to the observer. We showed that uncertainty in
cortical representations is directly linked to the uncertainty that hu-
man observers appear to use in their decisions, suggesting that
downstream areas have access and use the reliability of early-level
stimulus representations. Precisely how this information travels
through the brain and modulates downstream decisional stages is an
interesting question for future research.

Our results have important implications for theories of neural
encoding. Specifically, while uncertainty may be represented by
dedicated neural populations in, for example, the dopaminergic
system (Fiorillo et al., 2003), our findings make it unlikely that
specific visual cortical neurons represent summary statistics or
are tuned to sensory uncertainty (Vilares and Körding, 2011).
Rather, it appears that observers rely on the reliability of the
cortical stimulus representation itself, suggesting that the same
neural populations that represent the stimulus also carry infor-
mation about its uncertainty. This direct link between the cortical
representation of a stimulus and that of uncertainty supports
encoding schemes such as probabilistic population codes (Ma et
al., 2006), or sampling-based representations of probability
(Hoyer and Hyvärinen, 2003; Fiser et al., 2010). It will be inter-
esting for future neurophysiological studies that afford greater
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temporal resolution to dissociate between these and other alter-
natives for how probability distributions are encoded in neural
activity.

Our findings suggest that human observers use knowledge of
natural temporal statistics to determine whether or not previous
sensory observations should be integrated, or rather segregated,
in the current decision. Such an ideal serial integration process
predicts biases toward recently seen stimuli when the difference
between successive stimuli is relatively small, much like we ob-
served in participant behavior. Interestingly, for larger changes in
orientation (orientation angles  �60°), we additionally ob-
served a tentative repulsive bias away from the previous stimulus,
although this effect was only marginally significant. Such a repul-
sive effect at extreme stimulus differences has been reported by a
few previous behavioral studies on serial dependence (Bliss et al.,
2017; Fritsche et al., 2017), although not by others (Fischer and
Whitney, 2014; St. John-Saaltink et al., 2016), and appears to
reflect a different neural process that operates in parallel with the
attractive bias considered here (Fischer and Whitney, 2014;
Schwiedrzik et al., 2014; Fritsche et al., 2017; Kiyonaga et al.,
2017). For example, whereas the attractive effect transfers across
retinotopic locations, the repulsive effect is spatially specific, sug-
gesting that it arises due to a relatively low-level process akin to
sensory adaptation (Fischer and Whitney, 2014; Fritsche et al.,
2017). Moreover, attractive and repulsive biases evolve in differ-
ent directions during working memory maintenance (Bliss et al.,
2017; Fritsche et al., 2017), and appear to map onto distinct cor-
tical networks (Schwiedrzik et al., 2014). While the current study
focuses on attractive effects in behavior, the model does not pre-
clude any additional influences on serial decisions, which may,
for instance, work toward suppressing redundant information or
detecting change in the environment (Schwiedrzik et al., 2014). It
will be interesting for future research to disentangle this interplay
between positive and negative serial dependencies in perceptual
decisions.

Our work is related to previous studies on predictions in per-
ception. Several studies examined the behavioral and neural cor-
relates of temporally constant perceptual priors (or expectations)
in speed, direction of motion, or orientation perception (Weiss et
al., 2002; Stocker and Simoncelli, 2006; Girshick et al., 2011; Kok
et al., 2013; Vintch and Gardner, 2014). Our work differs in that
we focus on the temporal predictability of sensory inputs from
one moment to the next. Others have suggested that serial depen-
dence effects in perception might reflect an advantageous sensory
integration strategy used by the brain to improve behavior (Cic-
chini et al., 2014, 2017, 2018; Fischer and Whitney, 2014). Very
few of these studies, however, have cast this notion in an explicit
normative framework. One notable exception (Cicchini et al.,
2014) proposed a Kalman filter-like model that based its predic-
tions on not only previous sensory inputs, but also their associ-
ated uncertainty. We extend this work by incorporating an
explicit model of real-world temporal statistics in perceptual pre-
dictions, and use the framework to investigate how uncertainty is
represented in visual cortex. Our findings indicate that human
observers temporally combine sensory inputs in a statistically
advantageous fashion by relying on the precision of internal stim-
ulus knowledge. More fundamentally, our results advance un-
derstanding of how the nervous system represents uncertainty by
showing that the fidelity of a cortical stimulus representation is
directly linked to the uncertainty that observers appear to use in
their decisions.

It is interesting to note that a model observer that simply
averaged uncertainty-weighted sensory observations over time

failed to capture human behavior. Instead, behavioral biases were
well described by a model observer that combines sensory obser-
vations based on an internal model of the temporal statistics in
the natural environment. Our work, in this sense, is similar in
spirit to previous behavioral studies on motion tracking and
(sensori)motor control, that have likewise found that human ob-
servers appear to use an internal model of external world dynam-
ics in motor decisions (Wolpert et al., 1995; Mehta and Schaal,
2002; Orban de Xivry et al., 2013; Kwon et al., 2015). Interest-
ingly, although the description of the environment’s temporal
dynamics used here was necessarily rather simplified, the model
nonetheless captured several important aspects of human behav-
ior. This suggests that the description, albeit simple, still reflected
some of the dominant features (e.g., general stability mixed with
occasional unpredictability) of the full (and likely more complex)
internal world model used by human observers, at least within
the context of a simple orientation perception task.

Our findings are compatible with recent decisional accounts
of serial dependence (e.g., Bliss et al., 2017; Fritsche et al., 2017;
but see Cicchini et al., 2017; Fornaciai and Park, 2018) that pro-
pose that not perception itself, but rather later decisional stages,
bias behavior toward previously seen stimuli. Specifically, the
ideal observer framework proposed here capitalizes on the stabil-
ity of the visual world to make the best possible decisions, inte-
grating sensory observations across time while weighting each
piece of evidence by its uncertainty. It seems likely that this inte-
gration process is implemented in downstream areas involved in
decision-making or working memory (Bliss et al., 2017; Kalm
and Norris, 2018) that receive and retain various pieces of evi-
dence over time, although our results do not rule out the possi-
bility that visual representations are, indeed, combined at the
earliest stages of sensory processing.

In conclusion, we found that serial dependence in behavior is
consistent with a statistically advantageous sensory integration
process that leverages the stability of the natural environment.
Along with other findings in human orientation and speed per-
ception (Weiss et al., 2002; Stocker and Simoncelli, 2006; Gir-
shick et al., 2011), this suggests that certain behavioral biases,
while seemingly maladaptive in experimental settings, are likely
beneficial in the natural world. No less important, the observed
link, both here and in our previous work (van Bergen et al., 2015),
between cortical uncertainty and human behavior provides con-
verging critical evidence for Bayesian theories of perception, sug-
gesting that uncertainty is not only represented in cortical
stimulus representations, but also used by downstream areas to
modify perceptual decisions.
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